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ABSTRACT

Feature flags are a popular method to control functionality in re-
leased code. They enable rapid development and deployment, but
can also quickly accumulate technical debt. Complex interactions
between feature flags can go unnoticed, especially if interdepen-
dent flags are located far apart in the code, and these unknown
dependencies could become a source of serious bugs. Testing all
possible combinations of feature flags is infeasible in large sys-
tems like Microsoft Office, which has about 12 000 active flags. The
goal of our research is to aid product teams in improving system
reliability by providing an approach to automatically discover fea-
ture flag interdependencies. We use probabilistic reasoning to infer
causal relationships from feature flag query logs. Our approach is
language-agnostic, scales easily to large heterogeneous codebases,
and is robust against noise such as code drift or imperfect log data.
We evaluated our approach on real-world query logs fromMicrosoft
Office and are able to achieve over 90% precision while recalling
non-trivial indirect feature flag relationships across different source
files. We also investigated re-occurring patterns of relationships and
describe applications for targeted testing, determining deployment
velocity, error mitigation, and diagnostics.
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if (NEW_DESIGN && DARK_MODE) {

reduceBrightness ();

} else {

showWhiteBackground ();

if (! RIPCORD_3456) {

playAnimation ();

}

}

(a) Source code

NEW_DESIGN DARK_MODE

RIPCORD_3456

(b) Interdependencies

Figure 1: Example of feature flag usage

1 INTRODUCTION

Feature flags, also known as łfeature toggles,ž łfeature switches,ž
łfeature gates,ž or łchange gates,ž are a design pattern to condition-
ally enable a code path [12]. They are a popular method within the
software industry to provide the capability to control functionality
in released code. Developers can wrap new code with a feature flag
which can then be dynamically toggled even after the software has
been deployed. The value of a feature flag is evaluated at runtime
and it is either queried from a remote location or determined based
on parameters in the source code. Feature flags are used to run
experiments in production (e.g., for A/B testing), to roll out features
in a staged manner, or for emergency bug mitigation (łe-brakesž).
In the case of an e-brake, a feature flag is toggled when faulty
behaviour is observed such that the bug can be mitigated rapidly
without releasing a new version of the software. For an example of
how feature flags are used in source code, see figure 1a.

While feature flags enable rapid development and deployment
of software systems, they can also accumulate technical debt. Man-
aging many feature flags is complex and conflicts can result in
unexpected and sometimes disastrous behaviour, as illustrated by
the failure at Knight Capital Group [15], where reusing an old
feature flag created erroneous trades in the stock market over a
45-minute period and resulted in the company going from one of
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the largest traders in US equities to becoming bankrupt. The man-
agement and complexity of feature flags increases when flags are
interdependent (figure 1b). Interdependencies arise any time flags
are nested, when the dynamic runtime value of one flag determines
whether or not another flag is queried. In this way, code that is
far downstream from the łparentž flag can be affected, and the
inclusion of additional feature flags will cause yet more interdepen-
dencies. The farther apart interdependent flags are in the source
code, the more indirect their relationship can be. Developers might
not even be aware that some flags are interdependent, especially if
the relationship extends beyond function, module, or even process
boundaries. Such unknown dependencies can be (and have been)
a source of serious bugs that take a significant amount of time to
resolve. One way to mitigate these bugs would be to test all possible
combinations of feature flags, but this quickly becomes infeasible:
for the 12 000 feature flags currently active in the Microsoft Office
codebase, this would amount to ~7.2 × 107 testable combinations,
assuming these are all simple boolean flagsÐwhich they are not.

The goal of this research is to aid product teams to improve their
system’s reliability by providing a way to automatically determine
feature flag interdependencies in a large software system. Knowing
the relationships between feature flags that exist in a codebase
provides a diversity of tangible benefits:

• We can reduce our test burden by targeting only known sets
of interdependent feature flags for combinatorial testing.
• We can use the knowledge of feature flag relationships to
determine the ideal deployment velocity, the speed at which
changes controlled by feature flags can be rolled out.
• We can save time diagnosing failures involving feature flags
by following their transitive dependencies and recognizing
common interdependency patterns.
• We can prevent errors by enabling developers to check for
risky dependencies before toggling a feature flag.

To this end, we developed a novel approach to analyze the fea-
ture flags that are currently active within the desktop Microsoft
Office Suite. As stated, Microsoft Office currently contains around
12 000 feature flags with different life spans. Every day feature
flags are being added and removed. A challenge in studying fea-
ture flag interdependencies in a large and mature system is that
feature flags can occur in code written in many different program-
ming languages. Furthermore, over the years, numerous APIs have
been written to wrap the official feature flag SDK for additional
requirements. The many different ways of defining feature flags
in the source code, across many different programming languages,
makes it hard to use static or dynamic code analysis to determine
interdependencies. The novelty of our approach is that we analyze
the logs that are emitted every time a feature flag is queried in a
running Microsoft Office application. Assuming feature flag queries
are already being logged, the passive nature of our analysis requires
no changes to the surrounding configuration infrastructure and is
completely decoupled from the source code itself.

We investigate the following research questions:

RQ1 How can we infer feature flag interdependencies at scale?
RQ2 What is the accuracy of our method in a real-world setting?
RQ3 Do re-occurring patterns of feature flag relationships exist?

2 RELATED WORK

Interdependent Feature Flags. The problem of interdependent
feature flags is one that has existed for several decades, beginning
in the world of telecommunication switching [2, 9]. The modern
conundrum is well described by Rahman et al. [14], łevery change
to trunk should be tested across all possible combinations of enabled
feature toggles. This of course introduces an explosion of tests to
run.ž There is a common position that in practice, feature flags do
not need to be exhaustively tested. Fowler [5] recommends to test
only two combinations, łall the toggles on that are expected to be
on in the next releasež and łall toggles on,ž and Neely and Stolt
[13] suggest that combinatorial testing can largely be ignored if
the flags are independent, and these are often justified by the claim
that łmost feature flags will not interact with each otherž [8]. In the
case of Microsoft Office, however, the reality is quite the opposite.
There are hundreds of interdependent feature flags, and in the
course of our everyday jobs we have encountered many scenarios
where undocumented and untested interactions between feature
flags resulted in undesirable behavior. This unfortunate situation
lead us to try to build an understanding of which feature flags
were intertwined with others. This goal is difficult though, as noted
by Meinicke et al. [12] who explain łfinding and understanding
interactions is nontrivial, especially when features are developed
separately and there are no clear specifications.ž

Moreover the types of interaction among feature flags are com-
plex as well. There are many ways for configuration data to be
dependent on each other. Chen et al. [3] define a taxonomy of these
dependencies including Control, Default Value, Overwrite Value, and
Behavior dependencies. Our investigation focuses only on the Con-
trol dependency, where the value of one feature flag determines
whether a second feature flag is or is not executed.

Mechanism of Determining Interdependency. Before studying the
properties of interdependent feature flags, we first had to iden-
tify the relationships between each of the flags in Microsoft Office.
Some systems, such as the one used at Facebook [16] łexpresses
configuration dependency as source code dependency,ž which en-
tirely solves the problem of determining interdependency, however
it depends on a specific infrastructure that isn’t available in most
systems, including ours.

For many more systems, if interdependency relationships are
to be established, it must be done by inference, after the code has
been written. Medeiros et al. [10] proposed a configuration-space
sampling method where they used a combination of sampling algo-
rithms to find configurations that resulted in runtime faults such
as memory leaks and uninitialized variables. While they showed
this technique to be valuable, it becomes either less accurate or less
computationally feasible if configuration space is very large, which
is the case with Microsoft Office.

A common method to analyse feature flags in the literature is to
have humans validate where feature flags exist and what they’re
used for. This is likely a symptom of researchers needing to oper-
ate over many disparate systems that have heterogeneous feature
flagging mechanisms as well as not having the same long-term
incentives to automate the discovery process that the maintainer of
an individual system might have. One example of manual flag dis-
cover is Meinicke et al. [11], who performed an automated search
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Log Time Feature Value

1 14:18:27 A False
1 14:18:27 C False

2 09:10:38 B False
2 09:10:38 C False

3 23:53:04 A True
3 23:53:04 B False
3 23:53:04 C False

(a)

AF CF

(b)

BF

𝐴𝐹 CF

(c)

AT BF

𝐴𝐹 CF

(d)

𝐴𝑇 𝐵𝐹

𝐴𝐹 𝐶𝐹

(e)

𝐴𝑇 𝐵𝐹

𝐴𝐹 𝐶𝐹

(f)

𝐴𝑇 𝐵𝐹

𝐴𝐹 𝐶𝐹

(g)

Figure 2: Using query logs (a) to discover co-occurrences (bśd) and infer causalities (eśg)

through Git commit messages to find repositories which likely con-
tained feature flags, but then used manual inspection to verify the
flags existed. A system the size of Microsoft Office is too large for
this approach, and instead the relationship between configuration
values must be discovered as an automated process.

The bulk of research on feature flag or configuration interde-
pendency is done in a static analysis context. For example, Zhang
et al. [17] use static analysis to analyze which regions of code are
effected by configuration options, and from that determine which
configurations depend on each other. Their goal was specifically to
find łsilent misconfigurations,ž configuration values which have no
effect on the running program, often due to interactions between
configuration settings. Static analysis has many benefits including
well-defined correctness guarantees and the ability to find potential
future problems before they’re executed. Conversely, it is difficult
to have a static analysis system that can seamlessly process un-
conventional systems such as dynamically generated/loaded code,
programs that use multiple languages, and even large projects in a
single language that are only able to be built using complex compiler
configuration that is difficult to replicate in an external system.

Despite not being popular for investigating interdependency,
runtime analysis has proven useful in many contexts related to
independent configurations. For example, Attariyan and Flinn [1]
use dynamic information flow analysis to trace data coming from
configuration files to eventual errors as a tool for automated con-
figuration debugging. Given the complexity of the Microsoft Office
engineering ecosystem, we opted for the more robust option of
dynamic analysis on which to base our investigation.

3 INFERRING RELATIONSHIPS

For any two feature flags 𝐴 and 𝐵, we want to determine whether
the value of 𝐴 determines if 𝐵 is queried. In particular, we want to
determine if ł𝐴 causes 𝐵,ž i.e., 𝐴 → 𝐵, or if the value of 𝐴 has no
effect on whether 𝐵 is queried, i.e., 𝐴 ↛ 𝐵.

For example, the DARK_MODE flag in figure 1 is only queried if the
value of the NEW_DESIGN flag is true (assuming short-circuiting

of logical operators), so NEW_DESIGN → DARK_MODE. However,
whether or not DARK_MODE is queried is independent of the value
of the RIPCORD_3456 flag, so RIPCORD_3456↛ DARK_MODE.

Sometimes, feature flag relationships are easily inferable from the
source code itself. In general, however, the heterogeneous nature of
a large codebase makes static analysis difficult, especially for non-
local relationships. Feature flags might be spread across different
compilation units or be only very indirectly related. In these cases,
we have to resort to dynamic analysis of the code’s actual runtime
behaviour. Fortunately, it is possible to do this in an entirely passive
manner, without changes to the source code. In Microsoft Office,
any time a feature flag is queried during the run of an application,
the query is logged, together with the current value of the flag.
Figure 2a presents a simplified example of such query logs. By
combining the logs from multiple runs exercising different parts of
an application, we can gain broad insight into global feature flag
activation patterns.

3.1 Co-Occurrence Discovery

If 𝐴 → 𝐵, then we would expect the timespan Δ𝐴𝐵 = 𝑡𝐵 − 𝑡𝐴
between any particular query of 𝐴 (at time 𝑡𝐴) and the following
query of 𝐵 (at time 𝑡𝐵 ) to always be roughly the same, for all in-
stances of 𝐴 and 𝐵 that occur in the logs. The actual value of Δ𝐴𝐵
will be different for every pair of related feature flags and could
range anywhere from a few nanoseconds (e.g., for flags that occur
on the same line of code) to even a few seconds (e.g., for flags that
are related via some asynchronous operation, like copy-paste).

We can view Δ𝐴𝐵 as a relative measure of similarity between
the contexts in which flags 𝐴 and 𝐵 are evaluated. For example,
two flags that are queried in a single expression on the same line of
source code have very similar evaluation contexts, and thus a small
Δ𝐴𝐵 , as will two flags that are located in entirely different source
files but connected via a function call; however, two flags that are
queried at entirely different points during an application’s run will
have a large Δ𝐴𝐵 , regardless of whether they are spread far apart
in the source code or appear within a few lines of each other.
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We can collect all co-occurring feature flags by dragging a sliding
window of some empirically determined size Δ over the query logs,
selecting all feature flag pairs with Δ𝐴𝐵 ≤ Δ. Figures 2b to 2d
demonstrate this process (with Δ = 1 s) and show how a graph
representation of the discovered co-occurrences is successively built
up. In this co-occurrence graph, each vertex represents a feature
flag query that returned a particular value (𝐴𝐹 meaning flag𝐴 with
value False) and each edge signifies that the two connected queries
co-occurred within the same time window Δ. Note that the edges
are directed: we take the temporal order of queries into account to
avoid adding obviously paradoxical relationshipsÐif A is queried
before B, then 𝐵 ↛ 𝐴.

Algorithm 1 shows the co-occurrence discovery process in detail.
Although the resulting co-occurrence graph already significantly
reduces the state space of possible relationships (cf. section 4.1), it of
course includes many co-occurrences that are merely coincidental
and not actual causal relationships. To discover those, we need to
employ causal reasoning.

Algorithm 1: Co-Occurrence Discovery

Input: set of feature query log files 𝐿; time window size Δ
Output: co-occurrence graph 𝐺 = (𝑉 , 𝐸)

let 𝐺 = (𝑉 , 𝐸) be an empty directed graph;

for each log file 𝐿 do

for each sliding time window𝑊 of size Δ in 𝐿 do

for each feature query 𝑞 in𝑊 do

if 𝑞 ∈ 𝑉 then

increase the 𝑐𝑜𝑢𝑛𝑡 of 𝑞 in 𝑉 by 1;

else

add 𝑞 to 𝑉 with an initial 𝑐𝑜𝑢𝑛𝑡 of 1;

for each 2-combination (𝑞1, 𝑞2) in𝑊 do

if (𝑞1, 𝑞2) ∈ 𝐸 then

increase the 𝑐𝑜𝑢𝑛𝑡 of (𝑞1, 𝑞2) in 𝐸 by 1;

else

add (𝑞1, 𝑞2) to 𝐸 with an initial 𝑐𝑜𝑢𝑛𝑡 of 1;

3.2 Naive Causal Reasoning

To turn a co-occurrence graph into a causal graph, whose vertices
represent single feature flags and whose directed edges indicate
causal parent-child relationships, we must look at the values of
prospective parent flags. The main intuition is that if 𝐵 is queried
regardless of the value of 𝐴, then 𝐴 ↛ 𝐵.

To illustrate this, figures 2e to 2g proceed with the running
example and successively eliminate non-causal edges from the co-
occurrence graph. First, the edges 𝐴𝑇 → 𝐶𝐹 and 𝐴𝐹 → 𝐶𝐹 are
removed (figure 2e), because if both 𝐴𝑇 and 𝐴𝐹 co-occur with 𝐶𝐹 ,
then neither can actually be a causal factor for 𝐶 ; the value of 𝐴 is
clearly immaterial to whether or not 𝐶 is queried.

Next, 𝐵𝐹 → 𝐶𝐹 is removed (figure 2f), because even though
we do not see 𝐵𝑇 → 𝐶𝐹 , we also do not have any knowledge of
𝐵𝑇 ↛ 𝐶𝐹 , as 𝐵𝑇 does not occur at all. Merely knowing of a co-
occurrence (𝐵𝐹 → 𝐶𝐹 ) is not enough evidence for us to assume
a causal relationship (𝐵 → 𝐶), we also require evidence of the
absence of counter-evidence (𝐵𝑇 ↛ 𝐶𝐹 ). Put another way: in order

to determine that some feature flag is the parent of another, we
need to see both the cases where the flag is (or could be) the parent,
and the cases where it is not. It is only by contrasting these two
scenarios that we can gain information.

Finally, only 𝐴𝑇 → 𝐵𝐹 remains (figure 2g) and thus the causal
graph is simply 𝐴→ 𝐵.

3.3 Noise

Figure 3 shows a typical instance of a real-world co-occurrence
graph. Naive causal reasoning would require us to eliminate all of
its edges, because they clearly contradict one another. But not all of
the (co-)occurrences in this graph are equally valid; some of them
are purely noise, which can appear for a number of reasons:

Bugs Logging feature flag queries happens in a variety of het-
erogeneous environments and involves local caching, asyn-
chronous batched network transmissions, and server-side
log processing. Bugs can and do happen: queries get dropped
or logged in duplicate, time-ordering gets mixed up, and so
on. While we could work under the assumption that bugs are
relatively rare and could be mitigated by rigorously cleaning
our input data, we would much prefer to be able to draw
valid conclusions from data that occasionally includes small,
inexplicable amounts of noise. Such is the nature of industrial
software engineering.

Crossed Signals Our logs contain feature flag queries across
a variety of apps on a variety of platforms. Some of these
share the same feature flags but use them in different ways,
exhibiting different interdependencies. It certainly makes
sense to process some subsets of our logs separately, e.g.,
partitioned by platform. On the other hand, since apps do
communicate with each other and there are legitimate fea-
ture relationships that cross app boundaries, we would also
like to capture those.

Code Drift As the source code changes over time, and feature
flags are added and removed, the relationships between fea-
ture flags change as well. The query logs are like a slow
moving window sliding over the released app versions, cap-
turing multiple versions at once and slightly lagging behind
the latest changes in the source code, but steadily catching
up. As most relationships between feature flags remain rela-
tively stable, however, limiting ourselves to only logs from
the very latest (released or unreleased) app versions would
severely limit the amount of data available for analysis.

Coincidences Sometimes the data just lines up in a way that
is indistinguishable from a real signal. In principle, we will
never be able to entirely rule out this kind of noise. In
practice, we would like our analysis method to be sensitive
enough to discard many, if not most, such coincidences.

While some sources of noise can be mitigated, we would like to
deal with most data as-is. How can we infer causal relationships
in the presence of noise? And how can we be confident that our
inferences are correct, given that one small change in signal could
completely change the result?
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𝐴𝐹

5152

𝐴𝑇

10 089

𝐵𝐹

3674

𝐵𝑇

1478

3305

1339

2

1028

23

𝐴
?
→ 𝐵

𝑃 (𝐵 | 𝐴𝑇 ) = 10/10089 ≈ 0.00

𝑃 (𝐵 | 𝐴𝐹 ) = (3305 + 1339)/5152 ≈ 0.90

𝑃 (𝐴𝑇 | 𝐵) = 10/(3674 + 1478) ≈ 0.00

𝑃 (𝐴𝐹 | 𝐵) = (3305 + 1339)/(3674 + 1478) ≈ 0.90

𝐸𝑇 = ((1 − 0.00) + 0.90 + (1 − 0.00) + 0.90)/4 = 0.95

𝐸𝐹 = (0.00 + (1 − 0.90) + 0.00 + (1 − 0.90))/4 = 0.05

𝐵
?
→ 𝐴

𝑃 (𝐴 | 𝐵𝑇 ) ≈ 0.02

𝑃 (𝐴 | 𝐵𝐹 ) ≈ 0.01

𝑃 (𝐵𝑇 | 𝐴) ≈ 0.00

𝑃 (𝐵𝐹 | 𝐴) ≈ 0.00

𝐸𝑇 ≈ 0.50

𝐸𝐹 ≈ 0.50

Figure 3: Causal inference on a noisy real-world co-occurrence graph. The scenario 𝐴𝐹 → 𝐵 is the most likely one, because its

error value 𝐸𝐹 = 0.05 is the smallest, indicating the least deviation of its probabilities from the expected pattern.

3.4 Causal Reasoning with Probabilities

To deal with noisy data we can borrow some notions from proba-
bility theory. We can view a feature flag query as a random event

that either occurs within some time window or does not. We can
also view the value of the feature flag as the outcome of the event.
The probability that some feature flag 𝐵 co-occurs with another
feature flag 𝐴 when the value of 𝐴 is 𝑥 can then be described by
the conditional probability

𝑃 (𝐵 | 𝐴𝑥 ) =
𝑃 (𝐴𝑥 ∩ 𝐵)

𝑃 (𝐴𝑥 )
=

co-occurrences of 𝐴𝑥 with 𝐵

total occurrences of 𝐴𝑥
.

Assuming that we know𝐴𝑥 occurs before 𝐵, this can be interpreted
as: łHow likely is it that 𝐵 will be queried if 𝐴 has the value 𝑥?ž
The inverseÐłHow likely is it that 𝐴 had the value 𝑥 if we know
that 𝐵 was queried?žÐis given by

𝑃 (𝐴𝑥 | 𝐵) =
𝑃 (𝐴𝑥 ∩ 𝐵)

𝑃 (𝐵)
=

co-occurrences of 𝐴𝑥 with 𝐵

total occurrences of 𝐵
.

If 𝐴 has 𝑘 possible (observed) values, then there are 2𝑘 such proba-
bilities between 𝐴 and 𝐵, assuming we know that 𝐴 comes before
𝐵 (and thus the value of 𝐵 is not relevant). But how do these proba-
bilities help us determine whether 𝐴→ 𝐵 or 𝐴 ↛ 𝐵?

Let us consider the platonic ideal of a causal relationship:

if (A) {B}

Here, 𝐴 is assumed to be a boolean flag and this is the only occur-
rence of both 𝐴 and 𝐵 in the source code. Clearly, the likelihood
that 𝐵 will be queried if 𝐴 is true is 100 %, while the likelihood that
𝐵 will be queried if 𝐴 is false is 0 %. Similarly, the likelihood that 𝐴
was true if 𝐵 is queried is 100 % and the likelihood that 𝐴 was false
if 𝐵 is queried is 0%. We observe 𝑃 (𝐵 | 𝐴𝑇 ) = 1, 𝑃 (𝐵 | 𝐴𝐹 ) = 0,
𝑃 (𝐴𝑇 | 𝐵) = 1, and 𝑃 (𝐴𝐹 | 𝐵) = 0.

Realistically, 𝐴 or 𝐵 might occur multiple times in the source
code, possibly in relation with other feature flags:

if (A) {X} if (A && X) {B}

if (X) {B} if (X || A) {B}

The probabilities between 𝐴 and 𝐵 will then be affected by some
values proportional to the number of additional children of 𝐴 and
additional parents of𝐵. In particular, we nowhave 𝑃 (𝐵 | 𝐴𝑇 ) = 1−𝛼 ,
where 𝛼 is some term proportional to the number of additional
children of 𝐴, and 𝑃 (𝐴𝑇 | 𝐵) = 1 − 𝛽 , where 𝛽 is some term
proportional to the number of additional parents of 𝐵.

The table below gives the expected probabilities for the three
possible scenarios: 𝐴𝑇 → 𝐵, which we just discussed; the comple-
mentary 𝐴𝐹 → 𝐵, i.e., replacing A by !A in the code; and the case
when neither 𝐴𝑇 nor 𝐴𝐹 are a cause of 𝐵 and thus 𝐴 ↛ 𝐵.

𝐴𝑇 → 𝐵 𝐴𝐹 → 𝐵 𝐴 ↛ 𝐵

𝑃 (𝐵 | 𝐴𝑇 ) 1 − 𝛼 0 𝜀1
𝑃 (𝐵 | 𝐴𝐹 ) 0 1 − 𝛼 𝜀2
𝑃 (𝐴𝑇 | 𝐵) 1 − 𝛽 0 𝜀3
𝑃 (𝐴𝐹 | 𝐵) 0 1 − 𝛽 𝜀4

In the case of 𝐴 ↛ 𝐵, the probabilities are unknown random
values 𝜀1 to 𝜀4, about which we know nothing, except that they
are very unlikely to match the probabilities we expect in the other
two cases. The exact values of 𝛼 and 𝛽 are also unknown, and they
are different for each particular combination of feature flags 𝐴, 𝐵,
and 𝑋 , but it is reasonable to assume that for most feature flags the
number of parents and children will be much closer to one than,
for example, ten. Both 𝛼 and 𝛽 are thus expected to be significantly
smaller than one on average.

Knowing which probabilities to expect for 𝐴𝑇 → 𝐵 and 𝐴𝐹 →

𝐵, we can calculate two error values 𝐸𝑇 and 𝐸𝐹 , indicating how
much reality deviates from the expectations for each scenario. The
smaller the error, the more likely the scenario; if both errors are
too large, then 𝐴 ↛ 𝐵. Figure 3 demonstrates these calculations on
a noisy graph based on real data. In the remainder of this section,
we formalize this idea and generalize it to non-boolean flags.

Probabilistic Causal Inference. Assume that 𝐴 and 𝐵 are feature
flags, with 𝐴 having 𝑘 observed values, and that 𝐴 occurs before 𝐵.
As a shorthand, we will write𝐴𝑖 for the total number of occurrences
of 𝐴 that return value 𝑖 , 𝐵 for the total number of occurrences of 𝐵
(returning any value), and 𝐴𝑖𝐵 for the number of co-occurrences
of 𝐴𝑖 and 𝐵. For each of the 𝑘 possible scenarios 𝐴𝑖 → 𝐵, we can
compute an error value

𝐸𝑖 =
1

𝑘 + 2

©­«
(
1 −

𝐴𝑖𝐵

𝐴𝑖

)
+

𝑘∑︁
𝑗≠𝑖

𝐴 𝑗𝐵

𝐴 𝑗
+

(
1 −

𝐴𝑖𝐵

𝐵

)
+

𝑘∑︁
𝑗≠𝑖

𝐴 𝑗𝐵

𝐵

ª®¬
.

The overall error for the possibility 𝐴→ 𝐵 is then given by

𝐸 =

𝑘
min
𝑖

𝐸𝑖 .
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Because 𝐸 only captures the relative proportions between 𝐴 and
𝐵, we assess our confidence in 𝐸 by computing the least absolute
number of contributing observations

𝑁 = min (𝐴1, . . . , 𝐴𝑘 , 𝐵) .

Then, for empirically determined thresholds 𝐸 and 𝑁̂ ,

𝐴→ 𝐵 if 𝑘 ≥ 2 and 𝐸 ≤ 𝐸 and 𝑁 ≥ 𝑁̂ ,

𝐴 ↛ 𝐵 otherwise.

We are thus able to infer interdependence between feature flags
based on observed (co-)occurrences.

RQ1. How can we infer feature flag interdependencies

at scale? Looking solely at query logs, we are able to discover
feature flags that repeatedly co-occur within certain time win-
dows. Based on intuitions about code structure and employing
notions from probability theory, we developed a method of
probabilistic causal reasoning that is robust to noise by calcu-
lating how closely a pair of co-occurring feature flags matches
an ideal causal relationship.

4 EVALUATION

We implemented our inference mechanism in Python and applied
it to real-world feature flag query logs from Microsoft Office. We
chose a sub-sample of query logs restricted to a single release
platform and code fork, which made it easier to cross-reference
potential findings with the codebase. For a period of one week,
we collected about 2.5 million feature queries per day, from about
80 000 daily app sessions. We performed co-occurrence discovery
every day, with a time window size Δ = 1 µs, incrementally up-
dating our database of co-occurrences and re-calculating all causal
probabilities afterwards. At the end of the collection period, we
had discovered 5 946 317 pairs of 12 791 co-occurring feature flags.
Of these, 326 418 pairs of 5724 feature flags are potentially causally
related (𝐸 ≤ 0.50) and 593 pairs of 612 feature flags were considered
to be likely causally related (𝐸 ≤ 0.25). Figure 5 presents some
concrete examples of found relationships.

4.1 Precision

To evaluate the precision of our approachÐhow many of the rela-
tionships we uncover are actually true causal relationships?Ðwe
cross-checked the results of our inference algorithm with the Mi-
crosoft Office source code. We selected 200 pairs of 327 feature
flags in a purposive sample covering the range of 𝐸 and 𝑁 values
returned by our algorithm. The sample is balanced, with 107 of
the sample pairs exhibiting a real causal relationship in the code-
base, and 93 of no discernible causality. We manually inspected the
source code locations of each selected feature flag pair to determine
causality. This was a time-consuming process, as it is often not im-
mediately apparent whether a causal relationship exists, especially
for relationships that would be rather indirect. We erred on the
side of caution, and only reported true positives when the causal
relationship was clear beyond doubt; if the examiner was not able
to establish a causal relationship after some time (typically about
15 minutes), the feature flag pair in question was marked as a false
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Figure 4: Precision for different values of 𝐸 and 𝑁̂ . As our

willingness to accept unlikely candidates increases, so do the

rates of false positive parent-child relationships.

Table 1: Precision for 𝑁̂ = 100 and different values of 𝐸

Discovered Verified Falsified

𝐸 Pairs Flags Pairs Flags Pairs Flags Precision

0.01 16 31 7 14 0 0 1.00
0.05 98 167 28 50 0 0 1.00
0.10 149 231 41 72 1 2 0.98
0.15 214 296 50 87 2 4 0.96
0.20 305 372 53 92 3 6 0.95
0.25 593 612 56 96 6 12 0.90
0.30 941 901 56 96 9 18 0.86
0.35 2358 1791 57 98 12 24 0.83
0.40 7130 3012 58 99 12 24 0.83
0.45 10 247 3430 58 99 13 26 0.82
0.50 326 418 5724 59 99 30 57 0.66

positiveÐthus it is possible that the number of true positives is
actually higher than what we report.

Figure 4 shows the precision (true positives divided by sample)

plotted against 𝐸, for different choices of 𝑁̂ . We are able to achieve

100% precision with 𝐸 = 0.05 (regardless of 𝑁̂ ), and 90% precision

with 𝐸 = 0.25 and 𝑁̂ = 100. The exact numbers of manually verified
(true positive) and falsified (false positive) pairs are given in table 1,
which also shows how many pairs of feature flags we are able to

discover at different levels of 𝐸.
Choosing 𝐸 = 0.50 and 𝑁̂ = 100, i.e., classifying rather unlikely

pairs to be related, we still achieve a precision of 66%Ðsignificantly
better than chance. This makes sense, because the co-occurrence
discovery step already reduces the set of possible relationships in
a major way, filtering out those pairs of feature flags which are
definitely not related. Adding probabilistic causal reasoning on
top, i.e., only counting pairs with a 𝐸 ≤ 0.50, naturally increases
precision further.
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AugLoopRuntime.cpp

bool FSimilarityEnabled () {

static const FeatureFlag EduEnabled {...};

static const FeatureFlag ConEnabled {...};

static const FeatureFlat EntEnabled {...};

return (EduEnabled || ConEnabled || EntEnabled);

}

(a) Triangular relationship

EduEnabled

ConEnabled

EntEnabled

EntityManager.cpp

void EntityManager ::Init() {

if (FeatureFlags :: Instance(m_pWorkbook).AutoRefresh ()) {

RefreshManager :: CreateSharedInstance(m_pWorkbook);

}

}

RefreshManagerImpl.cpp

void RefreshManagerImpl :: CreateSharedInstance(Workbook* pWorkbook) {

try {

refreshManager = GetApi <RefreshManager >( NEWSHAREDOBJ(

RefreshManagerImpl , pWorkbook));

} CATCH_HANDLER

}

RefreshManagerImpl :: RefreshManagerImpl(Workbook* pWorkBook) :

m_pWorkbook(pWorkbook),

m_fRefreshBar(FeatureFlags :: Instance(pWorkbook).ShowRefreshBar ()),

...

(b) Indirect relationship across multiple files

AutoRefresh

ShowRefreshBar

Word.xml

<FSDropGallery Id=" flyoutInsertPics" FeatureFlag =" PictureRibbon">

<Commands >

<FSMenuCategory Class=" StandardItems">

<Items >

<FSExecuteAction Id=" insertPicFromFile" />

<FSExecuteAction Id=" insertOnlinePic" FeatureFlag =" OnlinePics" />

<FSExecuteAction Id=" clipArtDialog" />

</Items >

</FSMenuCategory >

</Commands >

</FSDropGallery >

(c) Relationship in resource file

PictureRibbon

OnlinePics

Figure 5: Real causal relationships between feature flags found in the Microsoft Office codebase. The source code has been

simplified for presentational purposes.
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4.2 Recall

Since our goal is to find relationships between feature flags that
are as-of-yet unknown, we do not have a priori ground truth. This
makes it difficult to establish recallÐhow many of the relation-
ships between feature flags that are hidden in the codebase can
our method uncover? We are unable to answer this question di-
rectly. However, we can make inferences based on the quality of
our results; in particular, the types of relationships we are seeing.

Figure 5a is an example of an łobviousž relationship: three fea-
ture flags are queried together as part of a boolean predicate, giv-
ing rise to a triangular interdependency; only if the EduEnabled
flag is false will the ConEnabled flag be queried, and only if both
EduEnabled and ConEnabled are false will EntEnabled be queried.
This relationship is manifested entirely in a single line of source
code, producing a strong signal in the query logs that our system
can easily detect.

Figure 5b shows a much more indirect relationship, spanning
multiple source files. Here, the parent (AutoRefresh) and child
(ShowRefreshBar) flags are queried in different program modules
and are separated in the control flow by a number of function calls
involving macro expansions, class constructors, and C++ templates.
A purely static approach might have some difficulties with this, but
our log-based analysis naturally captures the dynamic control flow;
the surrounding syntactic complexity is entirely irrelevant.

Figure 5c demonstrates that our approach is also completely
language-agnostic. In addition to flag usage in C++, C#, and other
programming languages, we are able to find dependencies between
feature flags used solely in non-code resource files, as in the present
case of the PictureRibbon→ OnlinePics pair found in an XML
configuration file used to construct an application UI.

Given the diversity of relationship types we are able to find (see
also section 5), including very indirect relationships, we believe
that our results are indicative of non-trivial recall.

RQ2.What is the accuracy of our method in a real-world

setting? To determine the precision of our approach, we man-
ually evaluated a subset of discovered relationships in a large-
scale real-world codebase and found that we are able to achieve
90% precision for likely pairs (𝐸 ≤ 0.25), with an absolute min-
imum precision of 66%. While we are unable to precisely quan-
tify recall due to a lack of ground truth, we see evidence of non-
trivial recall in the indirect nature of some of the discovered
relationships, which can span multiple files and programming
languages.

5 INTERDEPENDENCY PATTERNS

So far, we have discussed feature flag relationships mostly as pair-
wise parent-child relationships between two flags. As figure 5a
demonstrates, more complex patterns can emerge once transitive
dependencies are taken into account. Each of the two flags in a
parent-child relationship can themselves be in further parent-child
relationships with other flags (which is reflected in the values of 𝛼
and 𝛽 in section 3.4). To investigate the extent of such transitive
interdependencies and whether or not they give rise to re-occurring
patterns, we can study the global causal graph of feature flags, as

Figure 6: Causal graph of all feature flags (90% precision),

showing 146 feature clusters: 79 simple pairs, 35 outward

stars, 5 inward stars, 4 chains, 4 triangles, 19 other kinds.

seen in figure 6. Here, we plotted the 612 feature flags from our
evaluation (section 4) that were considered to be likely causally re-
lated (𝐸 ≤ 0.25). Nodes correspond to feature flags and the directed
edges represent parent-child relationships. The weakly connected
components of this graph are feature clusters, i.e., subsets of feature
flags that are only (indirectly) connected to each other but not to
flags from any other subset. The layout was achieved using the
Fruchterman-Reingold algorithm [6], which naturally brings out
independent clusters. The location and distance of nodes hold no
further meaning.

Based on visual inspection of this graph, we identified five basic
patterns of feature flag interdependencies. The identified patterns,
the rules used to determine if a feature flag cluster belongs to a
specific pattern, as well as examples of code structures that could
give rise to each pattern, are given in table 2.

The most common pattern is the simple pair of parent-child
flags, occurring 79 times in our sample and involving 158 flags
(25.8% of all flags in the sample). The second most common is the
outward star pattern, involving 122 flags (19.9%), where one parent
flag is at the center of numerous parent-child relationships, but the
children are themselves not interconnected. This situation arises
when a single flag guards a large section of code containing many
independent flags, or when a (often non-boolean) feature flag acts
as a configuration parameter that is repeatedly used in scenarios
involving other flags. Less common, involving only 15 flags (2.5%),
is the inward star, where a child flag has multiple parent flags, which
can occur when the child flag is reused in different code contexts.
Triangle and chain patterns each only occur 4 times in our sample,
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Table 2: Identified patterns of feature flag interdependencies

Pattern Description Code Example Occurrence Involved Flags

Chain

• → • → · · · → •

At least three nodes that are in consecutive parent-child
relationships.

if (A) {B}

...

if (B) {C}

4 (2.7%) 12 (2%)

Triangle

• • •

At least three nodes in a chain, with the first node also being
the parent of the last node.

(A && B && C) 4 (2.7%) 12 (2%)

Inward Star

• → • ← •

One node is the child of at least two parents, which are not
themselves connected.

if (A) {C}

if (B) {C}

5 (3.4%) 15 (2.5%)

Outward Star

• ← • → • → •

One node is the parent of at least two children, which are
not themselves connected.

f(A,B);

g(A,C);

35 (24%) 122 (19.9%)

Simple Pair

• → •

Two nodes that are in a parent-child relationship. if (A) {B} 79 (54.1%) 158 (25.8%)

Other Unclassifiable; often basic patterns with slight deviations,
or superclusters of multiple patterns.

19 (13%) 293 (47.9%)

and are closely related: triangle formations are usually due to short-
circuiting boolean predicates or closely nested if statements, while
chains arise either when consecutive parent-child relationships are
not nested but purely sequential, or when the relationships are very
indirect, with enough distance between parent and grandchild to
not be recognized as a triangle.

In addition to these basic patterns, a number of clusters remained
unclassifiable (19 out of 146, involving 293 flags in total). Of these,
many are essentially one of the basic patterns with slight devia-
tions preventing easy classification. For example, one large cluster
involving 102 flags (the łstarburstž in the lower center of figure 6)
is almost a pure outward star pattern, save for a few interconnected
children. Other unclassifiable patterns arise when two or more
basic patterns are connected by a bridge node, forming a singular
supercluster. Bridge nodes could indicate two otherwise unrelated
application components that are linked by a common feature flag,
increasing software coupling and perhaps introducing a hidden
interdependency. Inability to assign one of the basic classifications
may well be an indicator of unusual complexity and therefore risk.

RQ3. Do re-occurring patterns of feature flag relation-

ships exist?We found five re-occurring patterns of feature
flag interdependency relationships: simple pairs, outward
stars, inward stars, triangles, and chains. Other types of fea-
ture flag clusters are often deviations from these basic patterns.
We can use interdependency patterns to identify unusual or
risky code structures.

6 THREATS TO VALIDITY

While our work is based on real world data of a large-scale and
mature software system, there are threats to the generalizability of
of our approach.

Idealized Assumptions. If the relationships between feature flags
are actually significantly different than the platonic ideal if(A){B},
or the average number of children and parents per feature flag
(reflected in the values of 𝛼 and 𝛽) much higher than we assume,
then our probabilistic method might have a hard time inferring
relationships. However, we based our assumptions on our direct
experience with actual code containing feature flags and empirical
evaluation confirms the effectiveness of our approach.

Lack of Ground Truth. We have mentioned the difficulty of es-
tablishing recall, as we lack ground truth. It is possible that our
approach, while able to find some relationships, is still missing a
significant number. But based on our findings, which do include
non-trivial indirect relationships, we are confident of achieving

reasonable recall. The parameters (Δ, 𝐸, 𝑁̂ ), which influence recall,
need to be chosen empirically and we believe we made reasonable
choices for the purposes of this paper; we have limited evidence
that by increasing Δ we can further improve recall (see section 7).

Cold Start Problem. Our approach is fundamentally data-driven:
in order to make inferences about possible relationships between
feature flags, the data needs to contain evidence of these relation-
ships, in the form of sequential feature queries; to generate these
feature queries, the applications need to run with certain combina-
tions of feature flags enabled; without knowing the relationships
between feature flags beforehand, we would need to test all pos-
sible combinations of flags, with all possible values, in order to
generate the data necessary to make complete inferencesÐthis is
computationally infeasible. In reality, for our applications, we do
not actually need to have perfect recall. Being able to infer a sig-
nificant amount of interesting relationships is enough to make the
system useful. Furthermore, preliminary inference results can be
used to selectively generate missing data, enabling more inferences
and improving recall (see section 7).
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Codebase Bias. If the inference mechanism is too closely tailored
to the particularities of a single codebase (i.e., that of Microsoft
Office) and the uses of feature flags therein, then it might not be
transferable to other applications. However, we believe that the
foundations of our approach are entirely application-agnostic and
that it is sufficiently general to be applicable to other codebases.
Moreover, Microsoft Office itself consists of a heterogeneous set
of applications, with massive differences between their individual
core components.

7 FUTUREWORK

In the future, we aim to improve both precision and recall by com-
pleting our dataset and investigating larger time windows; and
we want to further explore patterns of interdependencies among
feature flag clusters.

Completing the Dataset. The probabilistic causal discovery ap-
proach works best with complete data, i.e., a dataset in which both
boolean feature flag values are present. As the dataset in practice is
oftentimes incomplete, i.e., only one feature flag value is present
as opposed to both, we plan to systematically run an automated
test suite [7] on Microsoft Office applications with different sets of
feature flag values. The output that is logged by the simulator in
our test suite is exactly the same as when real users would use a
Microsoft Office application.

Investigating Larger Time Windows. We plan to evaluate our
approach using larger co-occurrence time windows (Δ), which
could allow us to capture feature flag pairs that are being queried
further apart. We hypothesize that more nested feature flags might
be discovered in features that take longer to fully execute due to
user interactions, e.g., copying and pasting.

Exploring More Interdependency Patterns. Feature flag pattern
recognition could be improved by tolerating slight deviations from
existing patterns and by recognizing more complex combinations,
identifying bridge nodes and superclusters. We also want to better
understand what code structures give rise to which interdepen-
dency patterns, and how such patterns are linked to faults.

8 APPLICATIONS

We performed this research in response to several practical prob-
lems we regularly face in our organization. One of the most valuable
outcomes of this work is the diversity of tangible benefits we can
receive by applying our findings. These issues span the entire life-
cycle of our product, from automated testing to client-side error
mitigation. Further, the challenges we hope to address have impacts
that range from increased organizational efficiency to simplified
development practices.

Targeted Testing. Testing all possible combinations of feature
flag values becomes substantially harder as more feature flags are
used. The combinatorial explosion that occurs when using many
feature flags makes it impossible to test all combinations. Fowler [5]
recommends to test the feature flags that are known to be enabled
in the next release. However, large projects can contain thousands
of feature flags where every flag can be toggled. Therefore, it is
important to enable tooling that helps to systematically test only the

relevant combinations. Our research on feature flag co-occurrences
can be applied to substantially decrease the number of feature flag
value combinations to test, as only the co-occurring feature flags’
combinations need to be targeted for combinatorial testing. Flags
that are not co-occurring can be tested independently of each other.
Conversely, flags which are discovered to be involved in complex
relationships can be highlighted for additional scrutiny.

Deployment Velocity. We plan to use the knowledge of feature
flag dependencies to determine the velocity with which a flag can
be rolled out. Feature flags, by their design, indicate the usage
of unique modules of code. Interdependent features then indicate
interdependent modules, which is the main factor in coupled code.
It is well studied that software coupling is correlated with negative
quality indicators, such as vulnerabilities [4]. Consequently, we
extrapolate that interdependent flags are more at risk of admitting
vulnerabilities. We can use this information to roll out changes
slower to ensure that they’re thoroughly understood and tested
before being fully deployed.

Diagnostics. Failures rooted in feature flags can be tedious and
time-consuming to diagnose. Troubleshooting failures when multi-
ple feature flags are involved can incur substantial costs [1]. Show-
ing explicitly which feature flags are interdependent has the po-
tential to decrease the time to mitigate the problem, and it might
uncover previously unknown relationships as the cause of failure.

Error Mitigation. Many features are developed behind feature
flags, such that the flag can be toggled in case of a failure [14]. The
typical response to discovering an error behind a feature flag is to
mitigate the error by immediately disabling the flag. In the case
of interdependent flags, however, this can have unintended side
effects. It could disable more features than intended, or leave the
system configuration in an unexpected and untested state. Our re-
search can enable developers to check if there are any dependencies
before toggling a feature flag, which can help to prevent a further
regression.

9 CONCLUSION

In this paper, we described an approach for automatically discover-
ing interdependencies between feature flags in order to aid product
teams in improving their system’s reliability. Unknown dependen-
cies between feature flags can be a source of serious bugs but testing
all possible flag combinations is infeasible for large projects. Our
approach is based solely on analyzing feature flag query logs and is
especially suited for large heterogeneous codebases. We developed
a method of probabilistic causal reasoning that is language-agnostic
and robust against noise. We applied our approach on the Microsoft
Office codebase and achieved high precision and non-trivial recall.
In analysing the results, we found patterns of feature flag relation-
ships that can be indicators for the amount of risk associated with
certain flags. Our work can be applied in reducing the test burden
for combinatorial testing, in determining deployment velocity for
safe rollouts, in diagnostics of faults involving feature flags, and in
error mitigation by preventing regressions. In the future, we will
use automated testing to increase and improve the data available
for analysis and we plan to experiment with different time windows
to discover a wider range of possible relationships.
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