Discovering Feature Flag Interdependencies in Microsoft Office

https://mcschroeder.github.io/#fse2022

Michael Schröder

TU Wien
Vienna, Austria
michael.schroeder@tuwien.ac.at

Katja Kevic

Microsoft
Cambridge, UK
katja.kevic@microsoft.com

Dan Gopstein

Microsoft
New York, USA
dan.gopstein@microsoft.com

Brendan Murphy

Microsoft
Cambridge, UK
brendan.murphy@microsoft.com

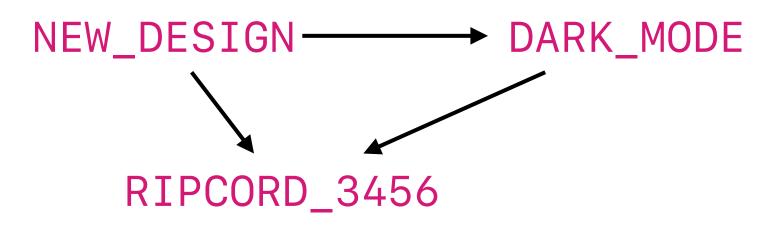
Jennifer Beckmann

Microsoft Redmond, USA jennifer.beckmann@microsoft.com

ESEC/FSE 2022, Industry Track Singapore

- Design pattern to conditionally enable a code path
 - for running experiments in production (e.g., A/B testing)
 - for rolling out features in a controlled manner
 - for emergency bug mitigation ("e-brakes")

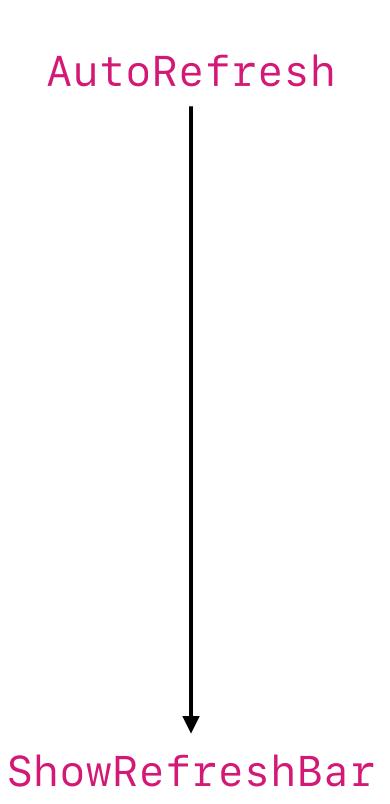
```
if (NEW_DESIGN && DARK_MODE) {
  reduceBrightness();
} else {
  showWhiteBackground();
  if (!RIPCORD_3456) {
    playAnimation();
  }
}
```



Nesting causes flags to become interdependent:
 dynamic runtime value of parent flag determines whether child flag is queried

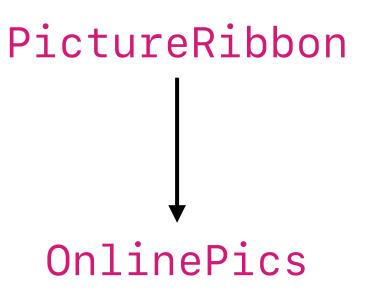
Example: Indirect relationship spanning multiple files

```
EntityManager.cpp
void EntityManager::Init() {
  if (FeatureFlags::Instance(m_pWorkbook).AutoRefresh()) {
    RefreshManager::CreateSharedInstance(m_pWorkbook);
RefreshManagerImpl.cpp
void RefreshManagerImpl::CreateSharedInstance(Workbook* pWorkbook) {
  try {
    refreshManager = GetApi<RefreshManager>(NEWSHAREDOBJ(RefreshManagerImpl,
                                                                               pWorkbook));
    CATCH_HANDLER
RefreshManagerImpl::RefreshManagerImpl(Workbook* pWorkBook) :
  m_pWorkbook(pWorkbook),
  m_fRefreshBar(FeatureFlags::Instance(pWorkbook).ShowRefreshBar()),
```



Example: Relationship in non-code resource file

Word.xml



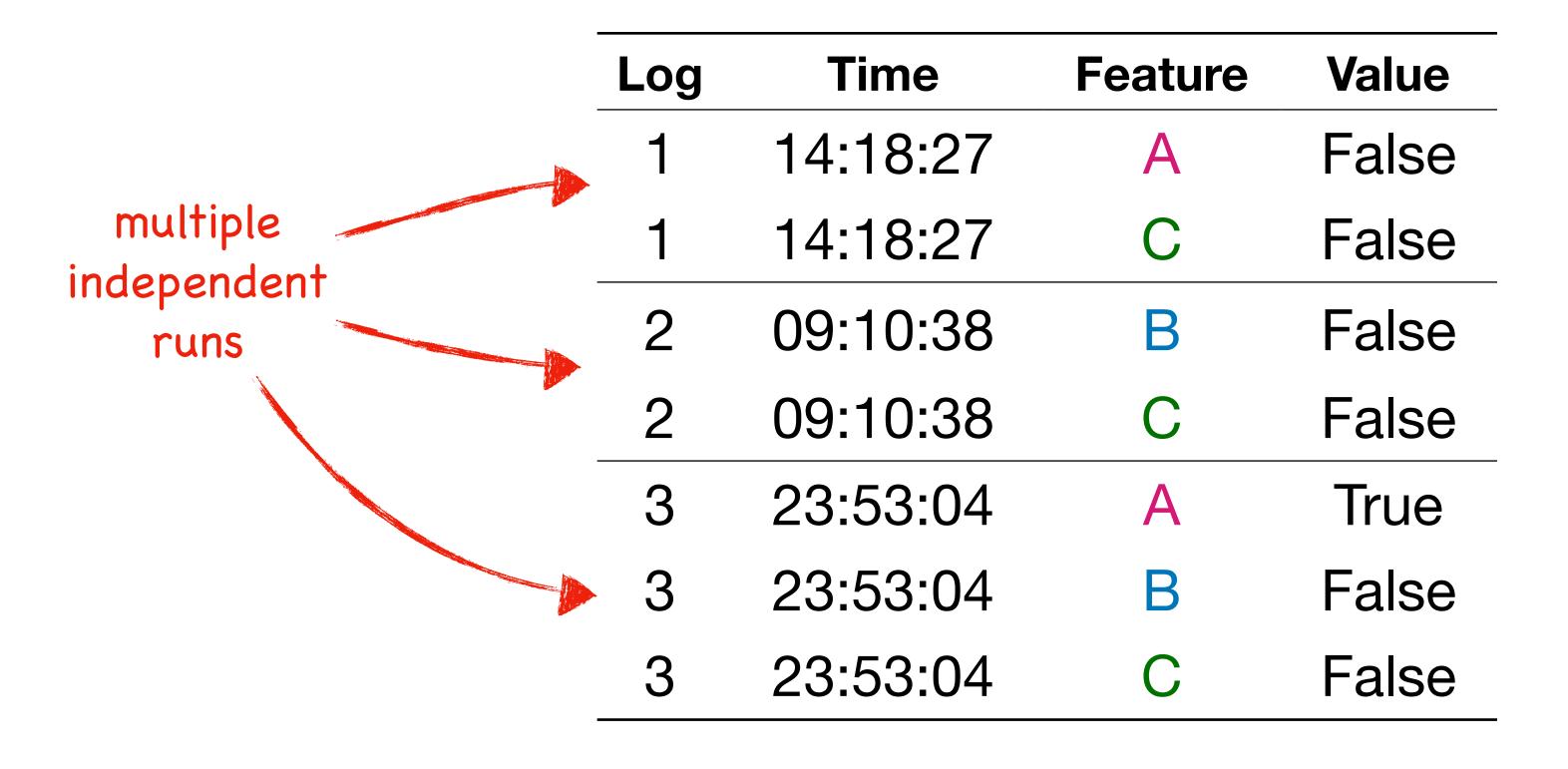
- Microsoft Office contains about 12 000 active feature flags
- Unknown interdependencies can be source of serious bugs
- Testing all possible flag combinations is infeasible ($\sim 7.2 \times 10^7$)

- Microsoft Office contains about 12 000 active feature flags
- Unknown interdependencies can be source of serious bugs
- Testing all possible flag combinations is infeasible ($\sim 7.2 \times 10^7$)
- Goal: Automatically discover feature flag interdependencies

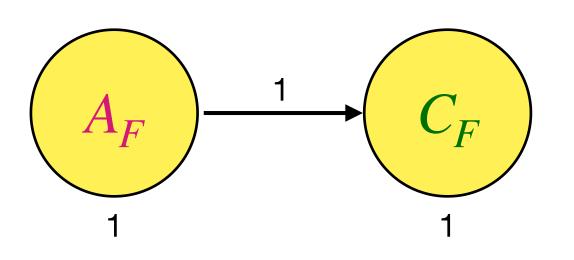
- Microsoft Office contains about 12 000 active feature flags
- Unknown interdependencies can be source of serious bugs
- Testing all possible flag combinations is infeasible ($\sim 7.2 \times 10^7$)
- Goal: Automatically discover feature flag interdependencies
- Approach: Probabilistic analysis of feature flag query logs
 - We achieve over 90% precision
 - We are able to recall non-trivial indirect relationships

Query Logs

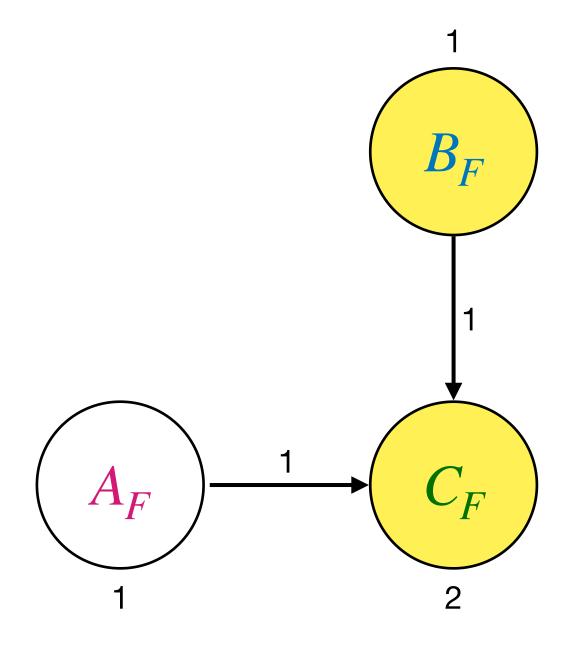
Any time a feature flag is queried during the run of an application, the query is logged, together with the current value of the flag.



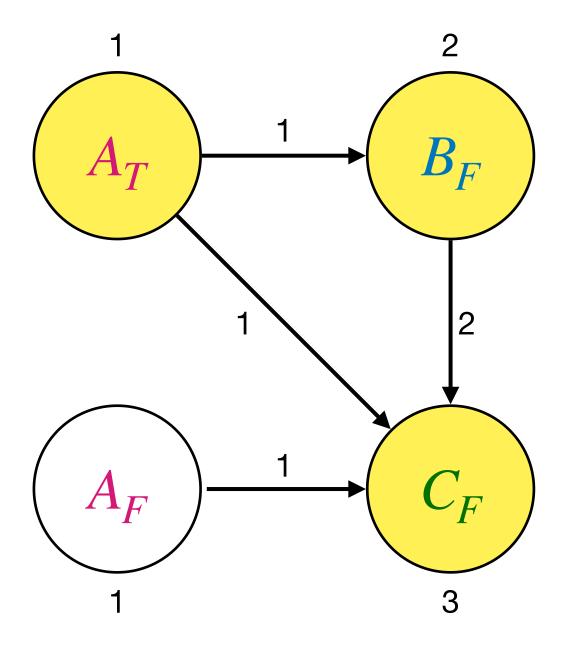
Log	Time	Feature	Value
1	14:18:27	A	False
1	14:18:27	C	False
2	09:10:38	В	False
2	09:10:38	C	False
3	23:53:04	A	True
3	23:53:04	В	False
3	23:53:04	C	False



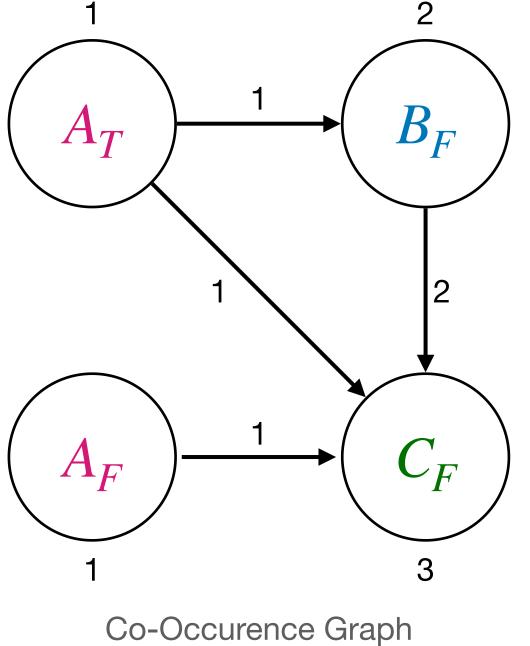
Log	Time	Feature	Value
1	14:18:27	A	False
1	14:18:27	C	False
2	09:10:38	В	False
2	09:10:38	C	False
3	23:53:04	A	True
3	23:53:04	В	False
3	23:53:04	C	False



Log	Time	Feature	Value
1	14:18:27	A	False
1	14:18:27	C	False
2	09:10:38	В	False
2	09:10:38	C	False
3	23:53:04	Α	True
3	23:53:04	В	False
3	23:53:04	C	False

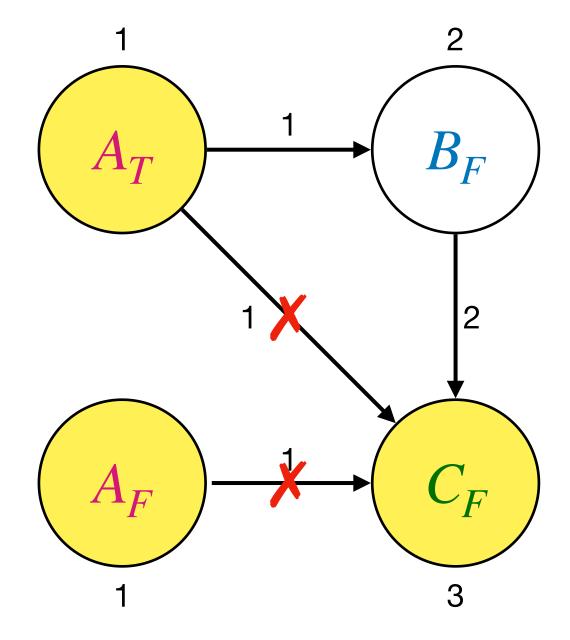


Log	Time	Feature	Value
1	14:18:27	A	False
1	14:18:27	C	False
2	09:10:38	В	False
2	09:10:38	C	False
3	23:53:04	A	True
3	23:53:04	В	False
3	23:53:04	C	False



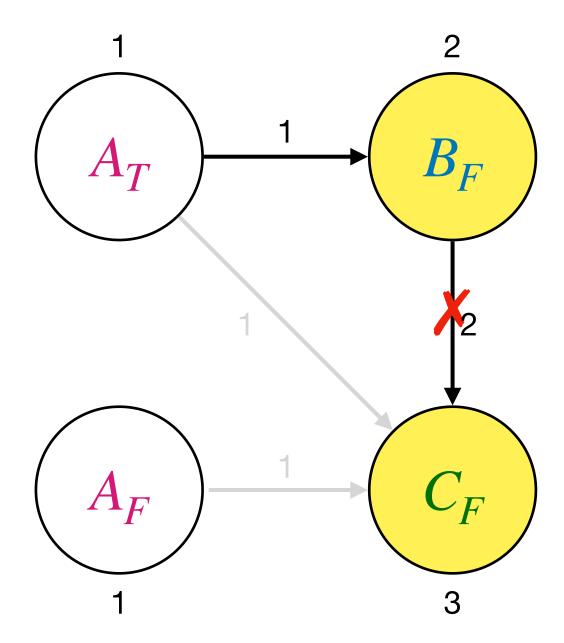
Eliminate non-causal relationships.

• $A_T o C_F$ and $A_F o C_F$ therefore $A \not\to C$



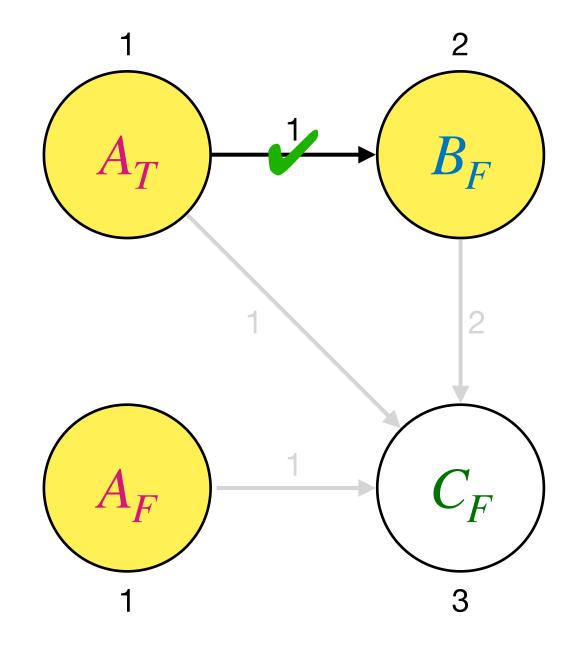
Eliminate non-causal relationships.

- $A_T o C_F$ and $A_F o C_F$ therefore $A \not\to C$
- $B_F \to C_F$ but $B_T \stackrel{?}{\to} C_F$ therefore $B \not\to C$

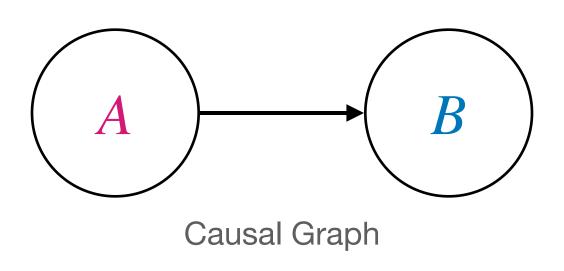


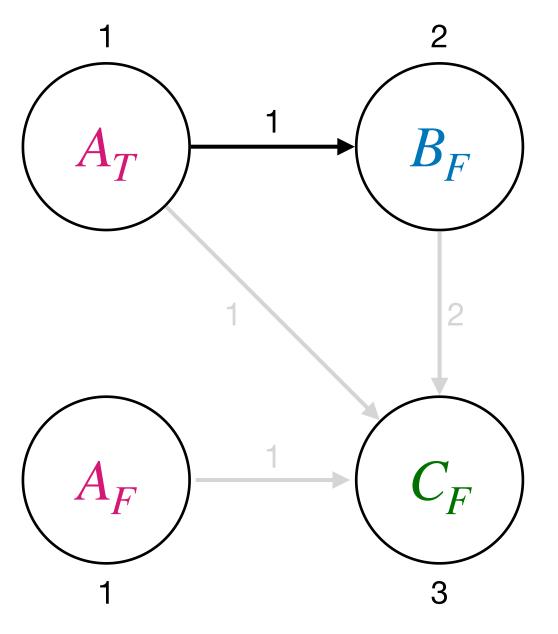
Eliminate non-causal relationships.

- $A_T o C_F$ and $A_F o C_F$ therefore $A \not\to C$
- $B_F o C_F$ but $B_T \overset{?}{ o} C_F$ therefore $B \not\to C$
- $A_T o B_F$ and $A_F o B_F$ therefore A o B



Eliminate non-causal relationships.

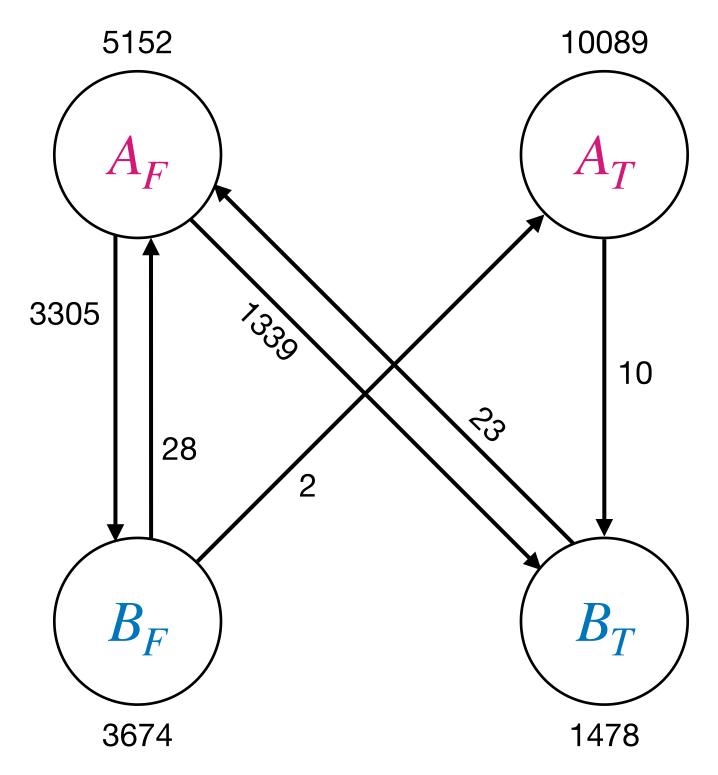




Meanwhile, in the real world...

- Real data has noise
 - Bugs in the logging pipeline
 - Crossed signals (app/version differences)
 - Code drift
 - Coincidences

- We can't eliminate all sources of noise
- We can't use naive reasoning on noisy data
- Which relationships are true and causal?



Noisy real-world co-occurence graph

• How likely is it that B will be queried if A has the value x?

$$P(B \mid A_x) = \frac{P(A_x \cap B)}{P(A_x)} = \frac{\text{co-occurrences of } A_x \text{ with } B}{\text{total occurrences of } A_x}$$

• How likely is it that B will be queried if A has the value x?

$$P(B \mid A_x) = \frac{P(A_x \cap B)}{P(A_x)} = \frac{\text{co-occurrences of } A_x \text{ with } B}{\text{total occurrences of } A_x}$$

• How likely is it that A had the value x if we know that B was queried?

$$P(A_x \mid B) = \frac{P(A_x \cap B)}{P(B)} = \frac{\text{co-occurrences of } A_x \text{ with } B}{\text{total occurrences of } B}$$

```
if (A) {B}
```

$$P(B \mid A_T) = 1$$

if (A) {B}
$$P(B \mid A_T) = 1$$

$$P(B \mid A_F) = 0$$

if (A) {B}
$$P(B \mid A_T) = 1$$

$$P(B \mid A_F) = 0$$

$$P(A_T \mid B) = 1$$

if (A) {B}
$$P(B \mid A_T) = 1$$

$$P(B \mid A_F) = 0$$

$$P(A_T \mid B) = 1$$

$$P(A_F \mid B) = 0$$

other children of
$$A$$

$$P(B \mid A_T) = 1 - \alpha$$

$$P(B \mid A_F) = 0$$

$$P(A_T \mid B) = 1$$

$$P(A_F \mid B) = 0$$

```
if (A) {B}
if (A) {X}
if (A && X) {B}
if (X) {B}
if (X | | A) {B}
```

$$P(B \mid A_T) = 1 - \alpha$$
 other children of A
$$P(B \mid A_F) = 0$$

$$P(A_T \mid B) = 1 - \beta$$

$$P(A_F \mid B) = 0$$
 other parents of B

if (A) {B}
$$A_T \to B \qquad P(B \mid A_T) \approx 1$$

$$P(B \mid A_F) \approx 0$$

$$P(A_T \mid B) \approx 1$$

$$P(A_F \mid B) \approx 0$$

if (A) {B}
$$A_T \to B \qquad P(B \mid A_T) \approx 1$$

$$P(B \mid A_F) \approx 0$$

$$P(A_T \mid B) \approx 1$$

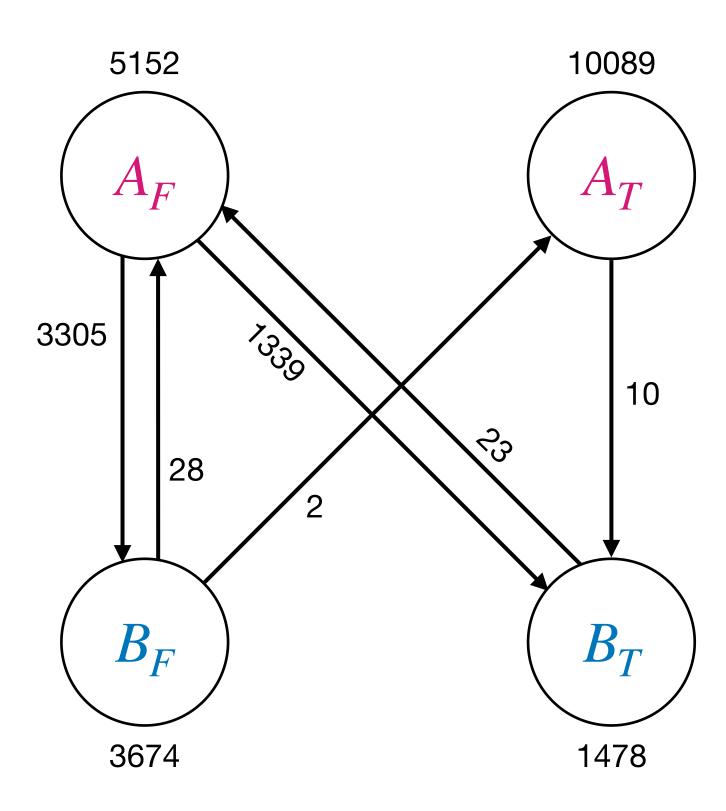
$$P(A_F \mid B) \approx 0$$

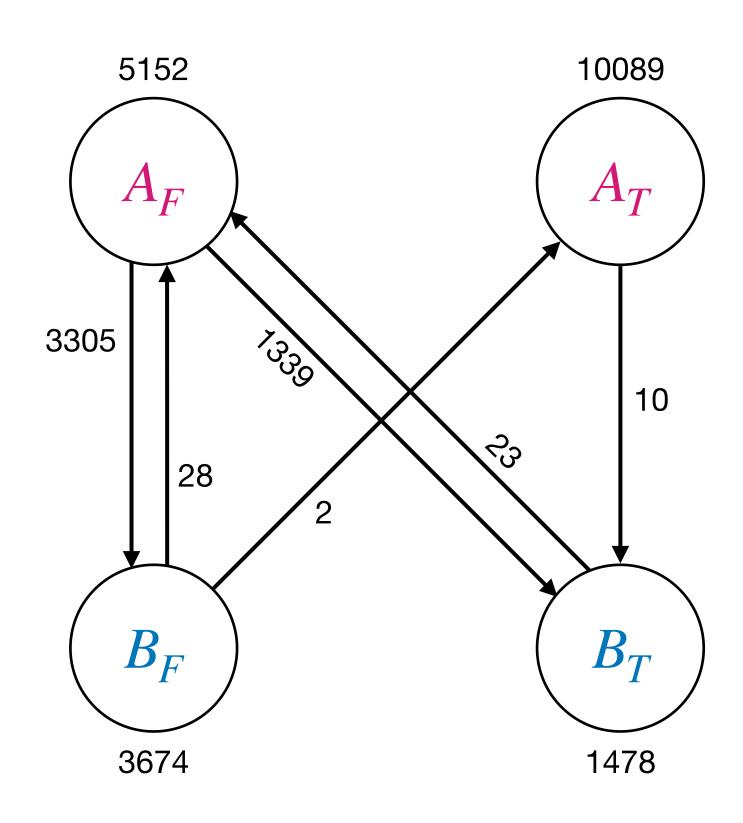
if (!A) {B}
$$A_F \to B \qquad P(B \mid A_T) \approx 0$$

$$P(B \mid A_F) \approx 1$$

$$P(A_T \mid B) \approx 0$$

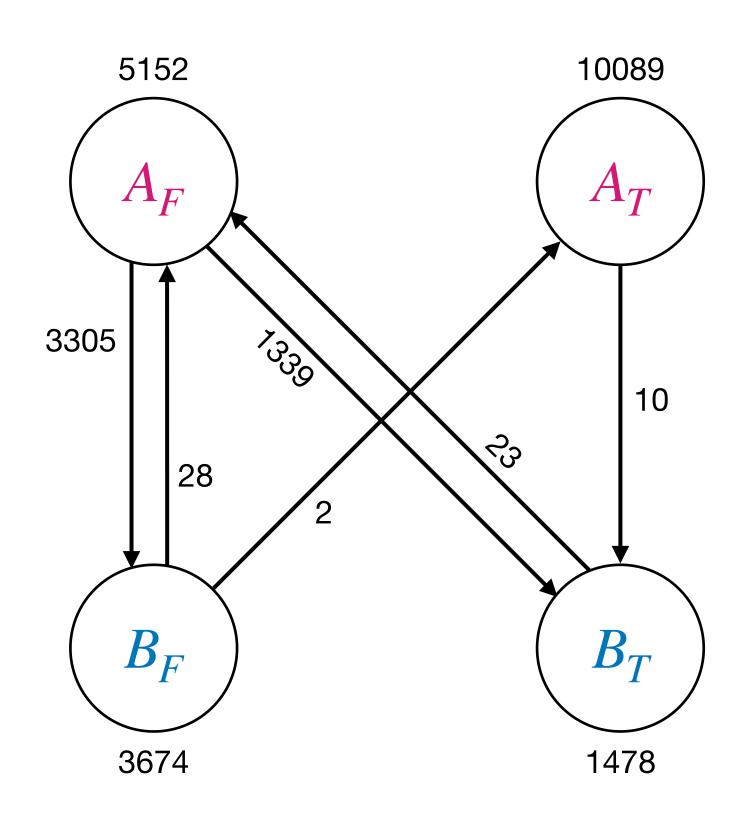
$$P(A_F \mid B) \approx 1$$



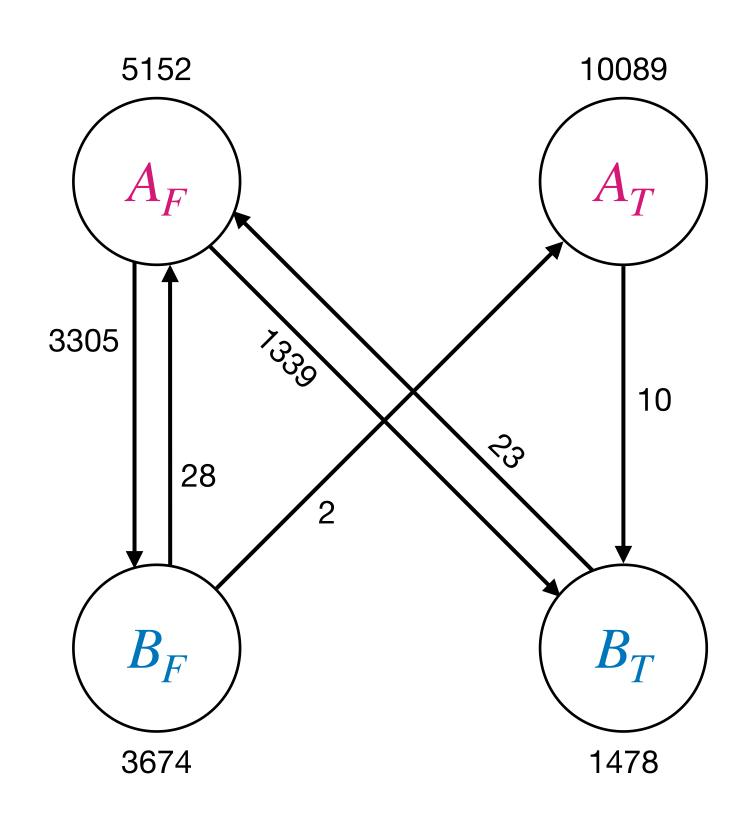


$$P(B \mid A_T) = 10/10089$$

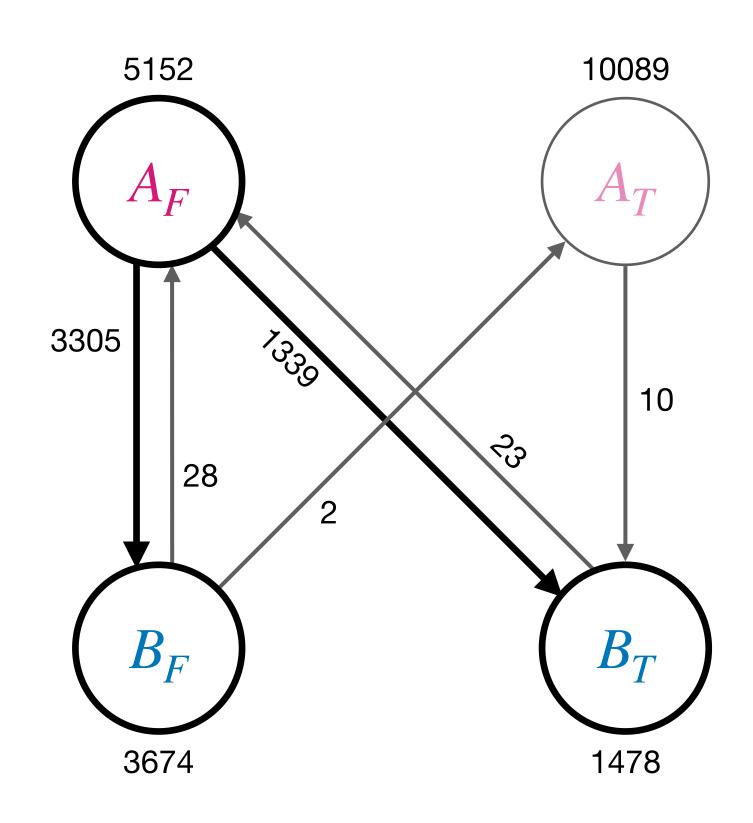
 $P(B \mid A_F) = (3305 + 1339)/5152$
 $P(A_T \mid B) = 10/(3674 + 1478)$
 $P(A_F \mid B) = (3305 + 1339)/(3674 + 1478)$
 $P(A \mid B_T) = 23/1478$
 $P(A \mid B_F) = (28 + 2)/3674$
 $P(B_T \mid A) = 23/(5152 + 10089)$
 $P(B_F \mid A) = (28 + 2)/(5152 + 10089)$



$$P(B \mid A_T) \approx 0.00$$
 $P(B \mid A_F) \approx 0.90$
 $P(A_T \mid B) \approx 0.00$
 $P(A_F \mid B) \approx 0.90$
 $P(A \mid B_T) \approx 0.02$
 $P(A \mid B_F) \approx 0.01$
 $P(B_T \mid A) \approx 0.00$
 $P(B_F \mid A) \approx 0.00$



	$A_T \rightarrow B$	$A_F \rightarrow B$
$P(B \mid A_T) \approx 0.00$	1	0
$P(B \mid A_F) \approx 0.90$	0	1
$P(A_T \mid B) \approx 0.00$	1	0
$P(A_F \mid B) \approx 0.90$	0	1
$P(A \mid B_T) \approx 0.02$	1	0
$P(A \mid B_F) \approx 0.01$	0	1
$P(B_T \mid A) \approx 0.00$	1	0
$P(B_F \mid A) \approx 0.00$	0	1
	$B_T \rightarrow A$	$B_F o A$



	$A_T \rightarrow B$	$A_F \rightarrow B$
$P(B \mid A_T) \approx 0.00$	1	O
$P(B \mid A_F) \approx 0.90$	0	1
$P(A_T \mid B) \approx 0.00$	1	0
$P(A_F \mid B) \approx 0.90$	0	1
$P(A \mid B_T) \approx 0.02$	1	O
$P(A \mid B_F) \approx 0.01$	0	1
$P(B_T \mid A) \approx 0.00$	1	0
$P(B_F \mid A) \approx 0.00$	O	1
	$B_T \rightarrow A$	$B_F o A$

- Assuming A is a feature flag with k possible values and A occurs before B
- For each possible $A_i \rightarrow B$ we can compute an error value

$$E_{i} = \frac{1}{k+2} \left(\left(1 - \frac{A_{i}B}{A_{i}} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{A_{j}} + \left(1 - \frac{A_{i}B}{B} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{B} \right)$$

- Assuming A is a feature flag with k possible values and A occurs before B
- For each possible $A_i \to B$ we can compute an error value

$$E_{i} = \frac{1}{k+2} \left(\left(1 - \frac{A_{i}B}{A_{i}} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{A_{j}} + \left(1 - \frac{A_{i}B}{B} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{B} \right)$$

• $E = \min E_i$ is the overall error for $A \to B$

- Assuming A is a feature flag with k possible values and A occurs before B
- For each possible $A_i \rightarrow B$ we can compute an error value

$$E_{i} = \frac{1}{k+2} \left(\left(1 - \frac{A_{i}B}{A_{i}} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{A_{j}} + \left(1 - \frac{A_{i}B}{B} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{B} \right)$$

- $E = \min E_i$ is the overall error for $A \to B$
- $N = \min(A_1, ..., A_k, B)$ is our confidence in E

- Assuming A is a feature flag with k possible values and A occurs before B
- For each possible $A_i \to B$ we can compute an error value

$$E_{i} = \frac{1}{k+2} \left(\left(1 - \frac{A_{i}B}{A_{i}} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{A_{j}} + \left(1 - \frac{A_{i}B}{B} \right) + \sum_{j \neq i}^{k} \frac{A_{j}B}{B} \right)$$

- $E = \min E_i$ is the overall error for $A \to B$
- $N = \min(A_1, ..., A_k, B)$ is our confidence in E

empirically determined thresholds

$$A \to B$$
 if $k \ge 2$ and $E \le \hat{E}$ and $N \ge \hat{N}$

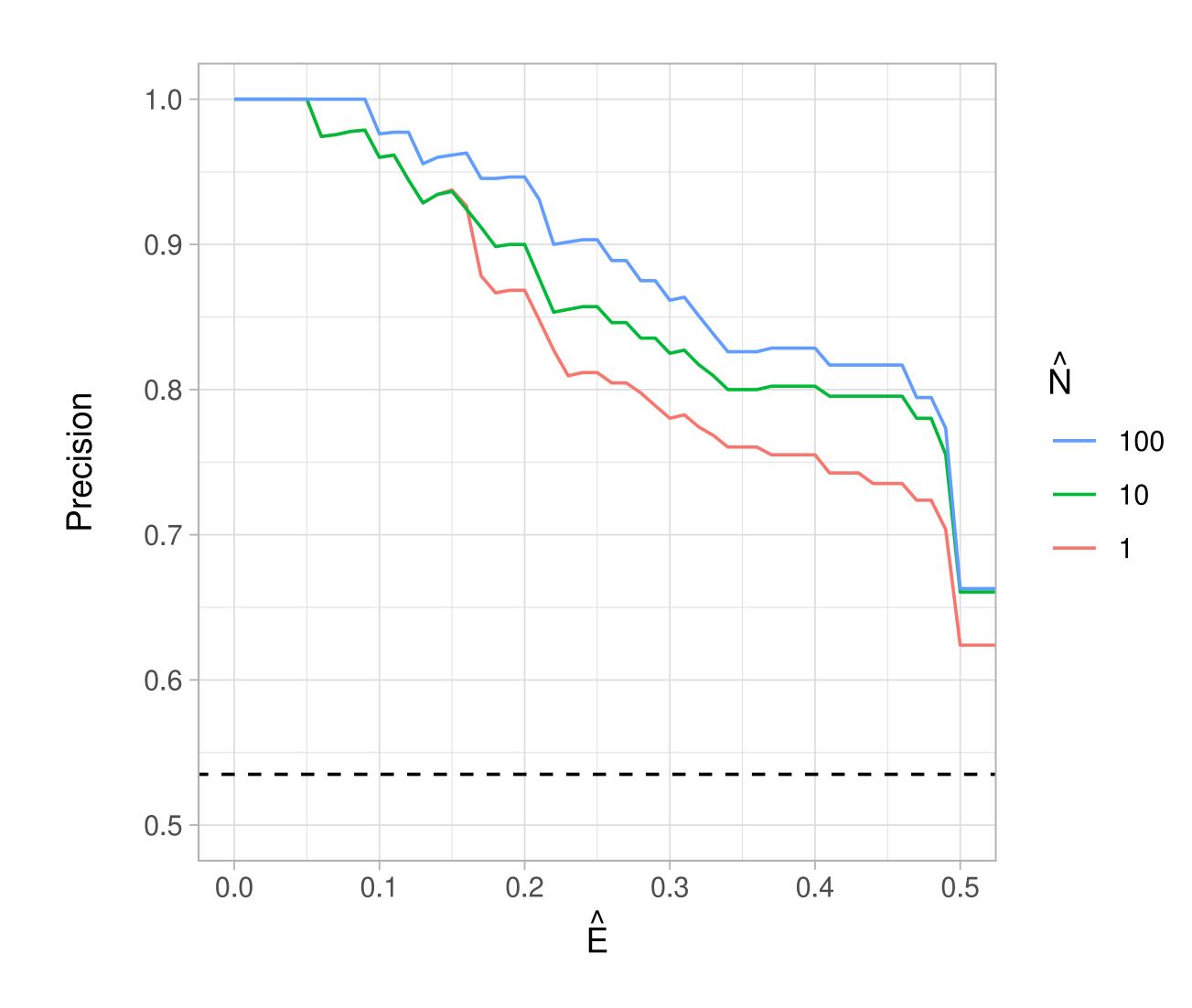
More in the paper!

Evaluation

- Precision
 - 90% at $\hat{E} = 0.25$ and $\hat{N} = 100$
 - 66% at $\hat{E} = 0.50$ and $\hat{N} = 100$

due to co-occurrence discovery

- Recall
 - no a priori ground truth
 - indicators of non-trivial recall



Interdependency Patterns

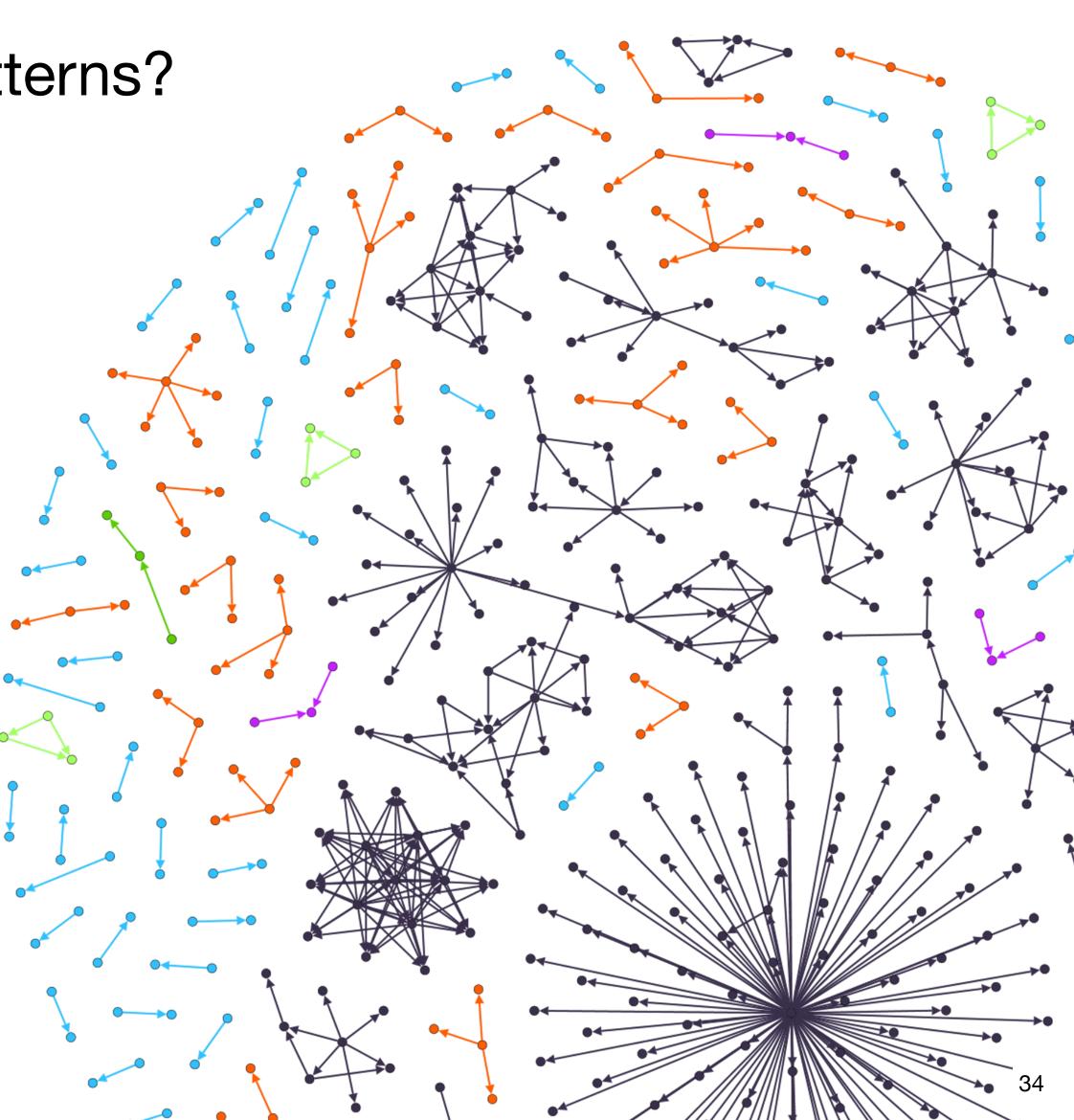
More in the paper!

• Can we identify re-occuring relationship patterns?

Potential indicators of coupling/complexity

Future Work

Table 2: Identified patterns of feature flag interdependencies			
Pattern	Description	Code Example	Occ
Chain	At least three nodes that are in consecutive parent-child	if (A) {B}	
$ullet$ \rightarrow $ullet$ \rightarrow \cdots \rightarrow $ullet$	relationships.	 if (B) {C}	
Triangle $\bullet \longrightarrow \bullet \longrightarrow \bullet$	At least three nodes in a chain, with the first node also being the parent of the last node.	(A && B && C)	
Inward Star $\bullet \to \bullet \leftarrow \bullet$	One node is the child of at least two parents, which are not themselves connected.	if (A) {C} if (B) {C}	
Outward Star	One node is the parent of at least two children, which are	f(A,B);	
$\bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet$	not themselves connected.	g(A,C);	
Simple Pair	Two nodes that are in a parent-child relationship.	if (A) {B}	79
ullet $ o$			



Discovering Feature Flag Interdependencies in Microsoft Office

https://mcschroeder.github.io/#fse2022

Michael Schröder

TU Wien
Vienna, Austria
michael.schroeder@tuwien.ac.at

Katja Kevic

Microsoft
Cambridge, UK
katja.kevic@microsoft.com

Dan Gopstein

Microsoft
New York, USA
dan.gopstein@microsoft.com

Brendan Murphy

Microsoft
Cambridge, UK
brendan.murphy@microsoft.com

Jennifer Beckmann

Microsoft Redmond, USA jennifer.beckmann@microsoft.com

ESEC/FSE 2022, Industry Track Singapore

