
Optimizing Lua using run-time type specialization
Michael Schröder
Bachelor’s Thesis, March 2012

Like other dynamically typed languages, Lua spends a significant
amount of execution time on type checks. Yet most programs, even
if they are written in a dynamic language, are actually overwhelm-
ingly monomorphically typed. To remove this unnecessary type-
checking overhead, we implement a portable optimization scheme
that rewrites virtual machine instructions at run-time based on the
types of their operands. While not consistent across all platforms, we
achieve average speed-ups of 1.2x on Intel, with a threaded variant of
our VM showing improvements in the 1.5x to 2.4x range.

1 Introduction

Lua is a powerful, fast, lightweight, embeddable scripting language.
[It] combines simple procedural syntax with powerful data descrip-
tion constructs based on associative arrays and extensible seman-
tics. Lua is dynamically typed, runs by interpreting bytecode for a
register-based virtual machine, and has automatic memory man-
agement with incremental garbage collection, making it ideal for
configuration, scripting, and rapid prototyping. http://lua.org/about.html

Like the language it interprets, the Lua virtual machine is small
and clean, implemented in just under 15 KLoC. This makes it an
excellent playground for interpreter optimization techniques. But
the Lua VM is already pretty fast, compared to VMs of similar
languages. Can we make it even faster?1 1 Note that we will focus on purely

portable optimizations, as is in the
spirit of Lua. While just-in-time
compilers can achieve speed-ups an
order of magnitude higher compared
to pure interpretation, they obviously
trade speed for portability. Even if a
platform is technically supported by a
JIT compiler, there may be political or
security-related reasons prohibiting the
execution of self-modifying code (e.g.
sandboxing on mobile devices). And
as they are usually highly complex
pieces of software, maintaining and
extending JIT compilers is a decidedly
non-trivial task. Besides, there already
exists a JIT compiler for Lua, called
LuaJIT (http://luajit.org), which
incidentally is considered to be one
of the fastest dynamic language
implementations.

Usually, the first thing one attacks when trying to optimize an
interpreter is its dispatch loop. The high number of branch mis-
predictions caused by naive dispatch implementations can have
a major impact on performance [EG03b, EG03a]. However, this is
only true for so called low abstraction level interpreters. The situation
is quite different when looking at interpreters for high-level dy-
namic languages, such as Lua or Python. As Brunthaler has shown
[Bru09], high abstraction level interpreters actually spend only a
negligible amount of their total run-time doing instruction dispatch,
because the amount of work necessary to execute each operation is
comparatively high.

The obvious optimization approach, therefore, is to the reduce
the amount of work per operation. In any dynamically typed lan-
guage, a significant amount of time is spent on type checks. When
the types of values are only knowable at runtime, even a seemingly
simple operation like multiplying two numbers takes up quite a lot
of CPU cycles. Add operator overloading into the mix (as is possi-
ble in Lua via the mechanism of metatables) and things suddenly
become rather expensive.

Yet even though the possibility of dynamic typing exists, most
“dynamically typed” programs actually aren’t. In the overwhelming
majority of cases, variables will stay monomorphic throughout the

http://lua.org/about.html
http://luajit.org


optimizing lua using run-time type specialization 2

lifetime of the program.2 This assumption provides the basis of our 2 An empirical study on a large num-
ber of programs written in the dynam-
ically typed Icon language revealed a
type consistency of 60% to 100%, with
an average of about 80% [WG96].

optimization scheme.

2 Run-time type specialization

The idea is this: when an instruction is dispatched for the first
time, it is specialized according to the types of its operands, i.e. its
bytecode is rewritten so that the type knowledge is now inherent in
the opcode of the instruction, eliminating the need for type checks
when executing the operation.3 To ensure that this is safe, we have 3 This is somewhat similar to the

quickening technique used by the
JVM and utilized by Brunthaler to
implement inline caching and other
optimizations for Python [Bru10a,
Bru10b, Bru11].

to guard (that is, add type checks) to any instruction that could
change the type of one of the operands of the instruction we just
specialized.

Should one of the guards fail, we will despecialize all instructions
that are depending on that guard. For simplicity’s as well as perfor-
mance’s sake, we adopt a very black-and-white view of the world:
types are either monomorphic (in the vast majority of cases) or
highly polymorphic, meaning that we will despecialize at the first
sign of trouble and never respecialize again.

ADD ? ADD num

ADD

specialize

despecialize despecialize

Put another way: we are removing type checks from loads of
values and adding them to stores of values. We hope that in the end
this will eliminate more type checks than it introduces. 4 4 To see how this might work, consider

that not every guarded instruction
really needs to perform a type check,
as the result type of an operation is
often dependent on the type of its
input. This will be demonstrated in
greater detail in section 4.

3 Prerequisites

3.1 Bytecode

The Lua VM is a register machine, and as such its bytecode is actu-
ally more of a wordcode: each instruction is exactly 32 bits long and
includes an opcode and up to three operands. Operands are most
commonly registers (viz. indexes into the global Lua stack, offset
by the base of the function) or constants (indexes into the function’s
array of constant values). Depending on the operation, the bytecode
is internally partitioned in one of three ways:

05132231

B C A OP

(s)Bx A OP

Ax OP

Figure 1: Bytecode layout in
the vanilla VM

With 6 bits available for the opcode, it is clear that there can only
be 64 different instructions. 40 of those are actually used by the
vanilla VM. This does not leave us with nearly enough space to add
all the specialized and guarded instruction variants we need, which
will be just shy of 200.

One possible solution to this problem is a variable-sized byte-
code, where we can have as many opcode bits as we need and fetch
additional operands on demand. This would be a major change to



optimizing lua using run-time type specialization 3

the VM however, and has its own complex performance implica-
tions (cf. [OKN02]).

Instead, we keep it simple: using the same fixed-size 32 bit in-
struction format, we only the change the internal partitioning, to
four fields of one byte each:

07152331

B C A OP

(s)Bx A OP

Ax OP

Figure 2: Bytecode layout in
the special VM

An 8 bit opcode field gives us enough space for all the instruc-
tions we need, with room to spare. Alas, there is a tradeoff: by
reducing the size of operands B and C, we impose some additional
limitations on our modified VM:

vanilla special

possible opcodes 64 256
stack slots per function 250 120
constants per function ∼67 million ∼16.7 million
maximum jump offset ±131,071 ±32,767

Table 1: Limits due to bytecode
layout
Note that the highest-order bit of
instruction fields B and C is used to
differentiate between registers and
constants. Thus the maximum size of
the actual value in those fields is only
half the size indicated by the total field
length, leading to the given stack slot
limits.

None of these should have any real-world impact, however.
Halving the maximum number of stack slots, for example, while
effectively halving the maximum number of local variables that can
be declared in a single function, still leaves us with a possible 120

named variables per function (including function arguments and
minus a few registers needed to hold temporary results). This is a
limit that hopefully no sane programmer would ever come close to.

The fact that we have not run into any problems during bench-
marking or when running the Lua test suite5, strongly indicates 5 http://www.lua.org/tests/5.2

that the number of programs that can be run on the modified VM
compared to vanilla Lua is not restricted in any meaningful way.

3.2 Register scope information

The scope of a register at a given point in time (i.e. at some location
of the program counter), is the range of instructions within which
that register contains only a single semantic entity. There are two
kinds of those entities:

Local variables All named variables, including function arguments.
The scope of a local variable ranges from the first use of that
variable to the last. Note that within this range there can be
multiple stores and loads to and from the register.

Temporary variables These arise when the result of one operation
is immediately used as input to another operation. Every tem-
porary scope begins with a register store and ends when the
register is first loaded from again.

http://www.lua.org/tests/5.2


optimizing lua using run-time type specialization 4

It should be clear that within a function a single register can have
multiple local and temporary scopes (because it can contain dif-
ferent semantic entities at different points in time), but that those
scopes cannot overlap.6 Gathering scope information for all regis- 6 Altough the borders of two scopes

can, and quite often do, fall “within”
the same instruction, e.g. ADD 3 0 3

could end one temporary scope of
register 3 and begin another one.

ters of a function can be done at compile time and is possible with
only a relatively small amount of changes to the bytecode compiler:
Whenever an instruction is emitted by the code generator, we de-
cide for each of the registers used by this instruction if we should
begin a new scope for the register or if we should extend the cur-
rent scope to include the newly emitted instruction. This decision
depends only on whether the register belongs to a local variable
or not and if this particular use of the register is a load or a store.
There is no need for any kind of advanced data-flow analysis.

Observe that each register has to be stored to at least once within a
scope before it is loaded from for the first time within that same scope. In
other words: any time an instruction that loads a variable is exe-
cuted, an instruction that has stored that same variable must have
been executed recently. This is what allows us to safely transfer
type checks from loads to stores.

There is a small problem, though: this guarantee does not en-
tirely hold in the case of function arguments and return values of
calls. From [IdFC05]:

For function calls, Lua uses a kind of register window. It evaluates the
call arguments in successive registers, starting with the first unused
register. When it performs the call, those registers become part of the
activation record of the called function, which therefore can access
its parameters as regular local variables. When this function returns,
those registers are put back into the activation record of the caller.

Function arguments and return values are stored to their regis-
ters outside of the function they are used in, which might even be
entirely outside the Lua environment. Register scopes cannot ex-
tend beyond function boundaries, which means these stores would
be "invisible" to us, and there would be no way to guard them.

There is a simple solution, however: we introduce a pseudo-store
instruction, which can be thought of as a “type change checkpoint”.
By default, this instruction does not perform any operation, it just
acts as a sentinel to inform us that at this point in the execution the
contents of a certain register might have changed. We name this
instruction CHKTYPE and it takes exactly one argument, which is
the register in question. CHKTYPE instructions are issued at the very
beginning of a function, one for each function argument, and after
CALL and TFORCALL instructions, one for each return value.

CHKTYPE instructions will also be issued after VARARG instructions.
The VARARG operation stores multiple registers at once, and hav-
ing one CHKTYPE for each store greatly simplifies specialization by
allowing us to guard each register individually.



optimizing lua using run-time type specialization 5

4 Motivational example

4.1 Notation

Throughout the example, we will put the specialization type of
an operation (if any) to the right of the operation name and the
guard type (if any) to the left. Initially, all specializable operations
are marked with ?, indicating that they have yet to be executed.
Various examples of the notation are given in the table below.

GETTABLE vanilla operation / despecialized
GETTABLE ? not yet specialized
GETTABLE str string-specialized
num GETTABLE number-guarded
num GETTABLE str string-specialized and number-guarded

Table 2: Bytecode notation
examples

4.2 Specialization

The specialization process itself is actually rather simple, and is best
explained with an example. We’re going to specialize the small Lua
function seen in listing 1.

The function reads n number of lines from the standard input
and appends them to the given table a. Tables are associative arrays
and provide the sole data structuring mechanism in Lua. Here, the
table is used like a normal array. The length operator (#) seen on
line 3 returns the number of elements in the table.

Listing 1: A small Lua function

1 function f(a,n)

2 for i=1,n do

3 a[#a+1] = io.read()

4 end

5 end

Listing 2: Vanilla bytecode

1 LOADK 2 -1

2 MOVE 3 1

3 LOADK 4 -1

4 FORPREP 2 6

5 LEN 6 0

6 ADD 6 6 -1

7 GETTABUP 7 0 -2

8 GETTABLE 7 7 -3

9 CALL 7 1 2

10 SETTABLE 0 6 7

11 FORLOOP 2 -7

12 RETURN 0 1

Listing 3: Special bytecode

1 CHKTYPE 0

2 CHKTYPE 1

3 LOADK num 2 -1

4 MOVE ? 3 1

5 LOADK num 4 -1

6 FORPREP ? 2 7

7 LEN ? 6 0

8 ADD ? 6 6 -1

9 GETTABUP ? 7 0 -2

10 GETTABLE ? 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE ? 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

Given this function, the compiler of our modified VM will
produce the bytecode seen in listing 3. It differs from bytecode
produced by the vanilla VM (cf. listing 2) only in the addition of
CHKTYPE instructions (at the beginning of the function and after the
CALL on line 12), and of course in the fact that most instructions



optimizing lua using run-time type specialization 6

are now of the not-yet-specialized variety. Note that the two LOADK

instructions are already specialized, since the types of their constant
operands (indicated here by the use of negative indexes) are known
at compile time and are guaranteed not to change.

Listing 4: Before specialization
of LEN
1 CHKTYPE 0

2 num CHKTYPE 1

3 LOADK num 2 -1

4 MOVE num 3 1

5 LOADK num 4 -1

6 FORPREP num 2 7

7 LEN ? 6 0

8 ADD ? 6 6 -1

9 GETTABUP ? 7 0 -2

10 GETTABLE ? 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE ? 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

For the purposes of our example, we are skipping over the first
couple of specializations, and begin with the program counter at
line 7, right before LEN ? is executed (see listing 4).

Listing 5: After specialization
of LEN
1 tab CHKTYPE 0

2 num CHKTYPE 1

3 LOADK num 2 -1

4 MOVE num 3 1

5 LOADK num 4 -1

6 FORPREP num 2 7

7 LEN tab 6 0

8 ADD ? 6 6 -1

9 GETTABUP ? 7 0 -2

10 GETTABLE ? 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE ? 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

The single operand of LEN ? is register 0, containing the local
variable a, which is a table. Examining the scope of this register,
we only find one store and it is the pseudo-store of the CHKTYPE

instruction on line 1. We add a guard to CHKTYPE so that it becomes
tab CHKTYPE, which makes it safe for us to specialize LEN ? to LEN

tab (see listing 5).

Listing 6: After specialization
of ADD
1 tab CHKTYPE 0

2 num CHKTYPE 1

3 LOADK num 2 -1

4 MOVE num 3 1

5 LOADK num 4 -1

6 FORPREP num 2 7

7 LEN tab 6 0

8 ADD num 6 6 -1

9 GETTABUP ? 7 0 -2

10 GETTABLE ? 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE ? 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

Next, we specialize ADD ?. This time there are two operands
to check and guard. One of those is a constant, so no guards are
necessary, and the other one is the temporary variable in register
6, whose scope ranges from the result of LEN tab to the input of
ADD ?. Since the output of LEN tab is guaranteed to be a number,
it is not necessary to add a guard. Specializing ADD ? to ADD num

therefore completely eliminates the type check (see listing 6).

It should now be clear that while the details differ from opera-
tion to operation, the basic procedure is always the same:

1. Examine the instruction’s operands and determine their types at
this point in time and if they are suitable for specialization.

2. For each operand, guard its register so that we can safely spe-
cialize. This means looking up the scope information for that
register and then examining every single instruction within that
scope, with the goal of finding those instructions that store to the
register as part of their operation. How and if we add a guard
depends on the instruction in question:

a. If the instruction already guarantees the return type we want,
then no guard is necessary. This is obviously the best case, as
it completely eliminates the type check.

b. If the instruction does not already have a guaranteed return
type, then guarding it is necessary. This effectively transfers
the type check.

c. If instruction guarantees a return type but it is not the one we
want, then we have hit upon a polymorphic type and abort
the specialization process. Any other guards we might have
added as part of this procedure up to now are removed again
and the instruction we wanted to specialize is despecialized.

3. If adding all the necessary guards was successful, specializing
the instruction is now safe. There is only one additional caveat:
if the instruction we want to specialize is itself guarded, we need
to reconcile this guard with the return type after specialization.



optimizing lua using run-time type specialization 7

If the new return type is the same as the guard, we can simply
remove the guard and eliminate the type check completely.
If the guard and the new return type clash, we immediately
start the despecialization process on the result register, but our
specialized instruction will stay specialized.

4. Re-dispatch the now specialized instruction.

If we continue to apply this procedure to the rest of the func-
tion, we end up with listing 7. Take note of how the type checks
that would have been necessary for SETTABLE, ADD and LEN could
be eliminated by reducing them to the single type check at tab
CHKTYPE on line 1. All in all we had to add three new type checks
(on lines 1, 2 and 9), but could remove about twelve type checks by
specializing the seven instructions on lines 4, 6-10 and 13.

Listing 7: Fully specialized
function
1 tab CHKTYPE 0

2 num CHKTYPE 1

3 LOADK num 2 -1

4 MOVE num 3 1

5 LOADK num 4 -1

6 FORPREP num 2 7

7 LEN tab 6 0

8 ADD num 6 6 -1

9 tab GETTABUP str 7 0 -2

10 GETTABLE str 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE num 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

4.3 Despecialization

Our example function could be specialized by making some as-
sumptions about its future. One of those assumption is that it will
always be called with a table as the first argument. What happens if
this is not the case?

We know what should happen: the function should behave just
as it would if it was never specialized. This might either mean that
it should produce a runtime exception, because whatever object we
gave it instead of a table does not support the same operations, or
it might mean that the function should continue to append lines
read from the standard input to a, but maybe with a different in-
terpretation of "append", depending on however the new object
overloads the standard table operations. In either case, what the
function must under no circumstances do is crash of some seg-
mentation fault because one of the specialized instructions could
no longer rely on doing things without a safety net. So we have to
despecialize the function before any of this can happen. Again, the
basic procedure is always the same:

1. Look up the scope information for the register whose guard has
failed and examine every single instruction within that scope to
find those that load from the register as part of their operation.
What happens next depends on the particulars of each instruc-
tion:

a. If the instruction is not itself guarded, simply remove the
instruction’s specialization (e.g. rewrite LEN tab to LEN).

b. If the instruction does have itself a guard, remove the instruc-
tion’s specialization but keep the guard. There is no need to
mess with the specializations of other instructions as long as
it is possible for guards to keep them safe.

c. If the instruction does not itself have a guard, but did guar-
antee its return type by virtue of its specialization, remove



optimizing lua using run-time type specialization 8

the specialization and despecialize that instruction’s result
register as well.7 7 Care must be taken not to get stuck

in an infinite despecialization loop
by remembering which registers have
already been visited.

2. Remove all remaining guards of the register within the scope.

In our example, the failing guard of tab CHKTYPE on line 1 will
lead to the despecialization of LEN tab, which in turn despecializes
ADD num, which in turn despecializes SETTABLE num. When the pro-
cess is finished, our function will look like listing 8, and will safely
work with whatever type a now has. Note that not the whole func-
tion was despecialized, just those parts relating to the polymorphic
type.

Listing 8: After despecializa-
tion of a
1 CHKTYPE 0

2 num CHKTYPE 1

3 LOADK num 2 -1

4 MOVE num 3 1

5 LOADK num 4 -1

6 FORPREP num 2 7

7 LEN 6 0

8 ADD 6 6 -1

9 tab GETTABUP str 7 0 -2

10 GETTABLE str 7 7 -3

11 CALL 7 1 2

12 CHKTYPE 7

13 SETTABLE 0 6 7

14 FORLOOP 2 -8

15 RETURN 0 1

4.4 Upvalues

One thing that we have neglected to mention until now is how we
cope with local variables that have been captured in a closure, also
known as upvalues. Since Lua has full closure support, assigning
to an upvalue immediately assigns to the captured local variable
in the enclosing function. This means that we need to be able to
despecialize within the original scope of this local variable (in the
enclosing function) when changing the type of the corresponding
upvalue (in the enclosed function). In essence, we need to be able to
despecialize “through” upvalues, i.e. across function boundaries.

Our implementation does this and goes a step further by also
allowing specialization to occur through upvalues, which is possible
by propagating guards across the function hierarchy:8 8 Since not all of the information

needed for this was available in the
vanilla VM, we had to modify the vir-
tual machine a little further so that the
scopes of upvalues and their relation
to parallel upvalues and enclosing
functions is now fully collected at com-
pile time and accessible to us during
specialization.

• When specializing an instruction that has an upvalue operand
(GETUPVAL, GETTABUP or SETTABUP), we add guards to all uses of
the corresponding local variable of that upvalue in the enclosing
function.

• When adding guards to a local variable, we recursively add
guards to all SETUPVAL instructions in enclosed functions that
store that local via the upvalue.

• When the type check of a guarded SETUPVAL fails, it despecializes
the local variable in the enclosing function.

• When despecializing a local variable, we recursively despecialize
all GETUPVAL, GETTABUP or SETTABUP instructions in enclosed
functions that load that local via an upvalue.

5 Experimental Evaluation

5.1 Methodology

The sixteen benchmarks in our test suite were taken from the fol-
lowing sources:

http://shootout.alioth.debian.org• The Computer Language Benchmarks Game, a set of micro-
benchmarks commonly used when comparing scripting language
implementations.

http://shootout.alioth.debian.org


optimizing lua using run-time type specialization 9

http://lua-users.org/lists/lua-l/

2011-04/msg00609.html

For more information see [dQ09]

• Several variations of the Richards benchmark, which simulates
the task dispatcher of a simple operating system kernel. The
different versions make use of different features of the Lua lan-
guage, such as metatables or tail calls.

http://luajit.org/performance.html• SciMark, a popular suite of scientific and numerical benchmarks,
ported to Lua by Mike Pall. We have split up the individual
components and gave them fixed iteration counts so as not to get
an auto-scaled score.

Both the vanilla and the special VM were compiled with -O2

-fomit-frame-pointer.9 We measured user CPU times using the 9 Apart from -O2 being the default
setting in Lua’s makefiles, we found
the results obtained using higher
optimization levels to be very erratic,
showing small improvements in a
few cases, but exhibiting worse or
unchanged performance most of
the time. We attribute this to more
aggressive inlining, but the full chain
of cause-and-effect eludes us.

built-in time shell command on a variety of different platforms. For
greater accuracy, benchmark inputs were chosen to produce run
times around the mid double-digits whenever possible. The best
results of three consecutive runs were compared.

5.2 Results

Based on other purely interpretative efforts to reduce type-checking
overhead in virtual machines, we expected to see relative speed-
ups of at least 30% [WMG10, Bru09]. The nearest we come to this
is on the Intel platform, were we could achieve a 20% speed-up on
average and a maximum speed-up of nearly 60%. Still, the results
are somewhat underwhelming, especially when we look at the
other platforms were performance was significantly worse, with not
even a 10% average speed-up for two of those.

min avg max

Intel Core 2 Duo SL9600 0.96 1.21 1.59
AMD Athlon 64 X2 4600+ 0.96 1.08 1.22
PowerPC 970 0.95 1.11 1.26
Feroceon 88FR131 (ARM) 0.95 1.07 1.17

Table 3: Relative speed-ups on
different platforms

For a more detailed breakdown, see
Appendixes A & B

We are not quite sure why one of the platforms has fared so
much better than the other three, but our first guess is that the in-
creased size of the modified VM’s dispatch loop (199 instructions
vs. the original 40) has a negative impact on the processors’ instruc-
tion cache behaviors. Differences in branch prediction accuracy
might also be significant.

L1 data L1 instruction L2

Intel Core 2 Duo SL9600 32 KB 32 KB 6 MB
AMD Athlon 64 X2 4600+ 64 KB 64 KB 512 KB
PowerPC 970 64 KB 32 KB 512 KB
Feroceon 88FR131 (ARM) 16 KB 16 KB 256 KB

Table 4: Comparison of CPU
cache sizes

http://lua-users.org/lists/lua-l/2011-04/msg00609.html
http://lua-users.org/lists/lua-l/2011-04/msg00609.html
http://luajit.org/performance.html


optimizing lua using run-time type specialization 10

5.3 Threading and choice of compiler

To be fully compatible with ANSI C, the Lua VM implements
switch-based dispatch. We stated before that this is generally
not ideal in terms of performance, but that the impact for a high
level VM such as Lua should be relatively minor. This assumption
turned out to be wrong: after implementing a very simple version
of indirect threading,10 we found all around performance gains on 10 http://lua-users.org/lists/

lua-l/2010-11/msg00436.htmlthe order of an additional 20% on the Intel platform, before and
after type specialization, compared to switch dispatch.11 This goes 11 This is especially interesting when

compared to the approach taken by
Williams, McCandless and Gregg
[WMG10]. With the same goal of re-
ducing type checks, they replaced the
default Lua dispatch loop wholesale
with a graph-based “dynamic interme-
diate representation”, which models
control flow and type changes along
its edges. Specialized nodes allow
for efficient execution of operations
based on the type knowledge inherent
in the structure of the graph, similar
to our specialized instructions. Dis-
patch along this graph also reduces
the number of branch mispredictions
in a similar way to threading. They
achieved speed-ups of 1.3x on average,
with peaks at 2x, though at the cost of
using significantly more memory.

While the dynamic graph allows
for further, more advanced optimiza-
tions and can be used as the basis to
implement a full-on JIT compiler, our
simpler scheme achieves comparable
performance when combined with
threading.

contrary to [Bru09] and shows that, at least for some high abstrac-
tion level interpreters, dispatch overhead can play a significant part
in overall run time.

We additionally found that choice of compiler should not be
underestimated. When we re-ran all benchmarks on the Intel plat-
form for each of the modified VMs using different compilers, even
though gcc proved the fastest choice for the vanilla VM, the spe-
cialized version using threading was an average 10% faster when
compiled with clang, with an outlying peak speed-up of 2.45x on
the mandelbrot benchmark. This goes to show that truly portable
optimizations are indeed very hard to achieve, as choosing the right
compiler and settings for the target platform can seriously influence
the success of other optimizations.

 0

 0.5

 1

 1.5

 2

 2.5

sp
ec

tr
al

-n
o

rm

n
-b

o
d

y

m
an

d
el

b
ro

t

fa
n

n
k

u
ch

-r
ed

u
x

b
in

ar
y

-t
re

es

p
i-

d
ig

it
s

ri
ch

ar
d

s-
lo

o
p

ri
ch

ar
d

s-
ta

il

ri
ch

ar
d

s-
o

o
-l

o
o

p

ri
ch

ar
d

s-
o

o
-t

ai
l

ri
ch

ar
d

s-
o

o
-m

et
a

ri
ch

ar
d

s-
o

o
-m

et
a-

ta
il

ri
ch

ar
d

s-
o

o
-m

et
a-

ca
ch

e

sc
im

ar
k

-f
ft

sc
im

ar
k

-s
o

r

sc
im

ar
k

-m
c

sc
im

ar
k

-s
p

ar
se

sc
im

ar
k

-l
u

n
si

ev
e

special gcc
special+threading gcc
special+threading clang

Figure 3: Relative speed-ups
on the Intel platform for differ-
ent optimizations and choices
of compiler

http://lua-users.org/lists/lua-l/2010-11/msg00436.html
http://lua-users.org/lists/lua-l/2010-11/msg00436.html


optimizing lua using run-time type specialization 11

6 Conclusion

We have presented a way to remove type-checking overhead in
the Lua virtual machine by rewriting bytecode instructions at run-
time. Taking advantage of the fact that most dynamically typed
programs are actually highly monomorphic, we specialize instruc-
tions according to the types of their arguments when they are first
executed, guard instructions on which the type assumptions made
during specialization depend and despecialize instructions should
the respective guards fail.

While this approach has shown promise on at least one plat-
form, with an average speed-up of about 1.5x when combined with
threaded dispatch, the results were less encouraging on other plat-
forms. We theorized that this was most likely due to differences in
CPU instruction cache and branch prediction behavior.

Adding about 1700 lines of code to the virtual machine, our
implementation is still comparatively simple and straightforward.
It will hopefully encourage other explorations of novel interpreter
optimization techniques for the Lua language.



optimizing lua using run-time type specialization 12

References

[Bru09] Stefan Brunthaler. Optimizing high abstraction-level interpreters. In Proceedings of the 26th
Annual Workshop of the GI-FG 2.1.4 “Programmiersprachen und Rechenkonzepte” (Physikzen-
trum Bad Honnef, Germany, May 4-6, 2009), Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität Kiel, Germany, Bericht Nr. 0915 (2009), pages 100–111, 2009.

[Bru10a] Stefan Brunthaler. Efficient interpretation using quickening. In Proceedings of the 6th Sym-
posium on Dynamic Languages, Reno, Nevada, US, October 18, 2010 (DLS ’10), pages 1–14, New
York, NY, USA, 2010. ACM Press.

[Bru10b] Stefan Brunthaler. Inline caching meets quickening. In Proceedings of the 24th European Confer-
ence on Object-Oriented Programming, Maribor, Slovenia, June 21-25, 2010 (ECOOP ’10), volume
6183 of Lecture Notes in Computer Science, pages 429–451. Springer, 2010.

[Bru11] Stefan Brunthaler. Purely Interpretative Optimizations. PhD thesis, Vienna University of Tech-
nology, 2011.

[dQ09] Fabio Mascarenhas de Queiroz. Optimized Compilation of a Dynamic Language to a Managed
Runtime Environment. PhD thesis, PUC-Rio, September 2009.

[EG03a] M Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’03), 2003.

[EG03b] M. Anton Ertl and David Gregg. The structure and performance of efficient interpreters.
Journal of Instruction-Level Parallelism, 5, 2003.

[IdFC05] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The implementa-
tion of lua 5.0. Journal of Universal Computer Science, 11(7):1159–1176, July 2005.

[OKN02] Kazunori Ogata, Hideaki Komatsu, and Toshio Nakatani. Bytecode fetch optimization for
a java interpreter. In Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, ASPLOS-X, pages 58–67, New York, NY, USA,
2002. ACM.

[WG96] Kenneth Walker and Ralph E. Griswold. Type inference in the icon programming language.
Technical Report 93-32a, Department of Computer Science, University of Arizona, 1996.

[WMG10] Kevin Williams, Jason McCandless, and David Gregg. Dynamic interpretation for dynamic
scripting languages. In Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, CGO ’10, pages 278–287, New York, New York, USA, 2010. ACM
Press.



optimizing lua using run-time type specialization 13

A Relative speed-ups compared to vanilla VM

Intel Core 2 Duo SL9600 with 2.13

GHz, running OSX 10.7.3 and gcc 4.2.1

 0

 0.5

 1

 1.5

 2

sp
ec

tr
al

-n
o

rm

n
-b

o
d

y

m
an

d
el

b
ro

t

fa
n

n
k

u
ch

-r
ed

u
x

b
in

ar
y

-t
re

es

p
i-

d
ig

it
s

ri
ch

ar
d

s-
lo

o
p

ri
ch

ar
d

s-
ta

il

ri
ch

ar
d

s-
o

o
-l

o
o

p

ri
ch

ar
d

s-
o

o
-t

ai
l

ri
ch

ar
d

s-
o

o
-m

et
a

ri
ch

ar
d

s-
o

o
-m

et
a-

ta
il

ri
ch

ar
d

s-
o

o
-m

et
a-

ca
ch

e

sc
im

ar
k

-f
ft

sc
im

ar
k

-s
o

r

sc
im

ar
k

-m
c

sc
im

ar
k

-s
p

ar
se

sc
im

ar
k

-l
u

n
si

ev
e

AMD Athlon 64 X2 6400+ with 2.4
GHz, running Debian 4.1.1-21 and gcc

4.1.2

 0

 0.5

 1

 1.5

 2

sp
ec

tr
al

-n
o

rm

n
-b

o
d

y

m
an

d
el

b
ro

t

fa
n

n
k

u
ch

-r
ed

u
x

b
in

ar
y

-t
re

es

p
i-

d
ig

it
s

ri
ch

ar
d

s-
lo

o
p

ri
ch

ar
d

s-
ta

il

ri
ch

ar
d

s-
o

o
-l

o
o

p

ri
ch

ar
d

s-
o

o
-t

ai
l

ri
ch

ar
d

s-
o

o
-m

et
a

ri
ch

ar
d

s-
o

o
-m

et
a-

ta
il

ri
ch

ar
d

s-
o

o
-m

et
a-

ca
ch

e

sc
im

ar
k

-f
ft

sc
im

ar
k

-s
o

r

sc
im

ar
k

-m
c

sc
im

ar
k

-s
p

ar
se

sc
im

ar
k

-l
u

n
si

ev
e

PowerPC 970 2 GHz, running Debian
4.4.5-8 and gcc 4.4.5

 0

 0.5

 1

 1.5

 2

sp
ec

tr
al

-n
o

rm

n
-b

o
d

y

m
an

d
el

b
ro

t

fa
n

n
k

u
ch

-r
ed

u
x

b
in

ar
y

-t
re

es

p
i-

d
ig

it
s

ri
ch

ar
d

s-
lo

o
p

ri
ch

ar
d

s-
ta

il

ri
ch

ar
d

s-
o

o
-l

o
o

p

ri
ch

ar
d

s-
o

o
-t

ai
l

ri
ch

ar
d

s-
o

o
-m

et
a

ri
ch

ar
d

s-
o

o
-m

et
a-

ta
il

ri
ch

ar
d

s-
o

o
-m

et
a-

ca
ch

e

sc
im

ar
k

-f
ft

sc
im

ar
k

-s
o

r

sc
im

ar
k

-m
c

sc
im

ar
k

-s
p

ar
se

sc
im

ar
k

-l
u

n
si

ev
e

Feroceon 88FR131 1.2 GHz, an em-
bedded ARM device running Debian
4.4.5-2 and gcc 4.4.5

 0

 0.5

 1

 1.5

 2

sp
ec

tr
al

-n
o

rm

n
-b

o
d

y

m
an

d
el

b
ro

t

fa
n

n
k

u
ch

-r
ed

u
x

b
in

ar
y

-t
re

es

p
i-

d
ig

it
s

ri
ch

ar
d

s-
lo

o
p

ri
ch

ar
d

s-
ta

il

ri
ch

ar
d

s-
o

o
-l

o
o

p

ri
ch

ar
d

s-
o

o
-t

ai
l

ri
ch

ar
d

s-
o

o
-m

et
a

ri
ch

ar
d

s-
o

o
-m

et
a-

ta
il

ri
ch

ar
d

s-
o

o
-m

et
a-

ca
ch

e

sc
im

ar
k

-f
ft

sc
im

ar
k

-s
o

r

sc
im

ar
k

-m
c

sc
im

ar
k

-s
p

ar
se

sc
im

ar
k

-l
u

n
si

ev
e



optimizing lua using run-time type specialization 14

B Detailed benchmark results

Intel Core 2 Duo SL9600 with 2.13

GHz, running OSX 10.7.3 and gcc 4.2.1

normal threaded
vanilla special vanilla special

spectral-norm 72.644 70.040 63.614 57.797
n-body 52.713 42.586 48.186 32.813

mandelbrot 84.755 54.530 59.252 44.673
fannkuch-redux 160.780 117.158 137.943 97.528

binary-trees 26.628 27.802 26.205 26.051
pi-digits 53.015 40.816 46.069 35.575

richards-loop 52.079 48.664 46.583 40.944
richards-tail 50.672 46.907 44.598 41.120

richards-oo-loop 53.035 48.411 46.851 40.646
richards-oo-tail 52.153 45.783 52.239 40.340

richards-oo-meta 56.167 51.103 49.174 48.910
richards-oo-meta-tail 56.274 47.985 49.582 42.464

richards-oo-meta-cache 55.759 52.315 50.383 43.716
scimark-fft 32.130 24.846 27.944 19.428

scimark-sor 28.816 21.231 26.495 17.916
scimark-mc 37.955 32.539 36.495 24.374

scimark-sparse 39.101 31.713 36.431 29.094
scimark-lu 46.656 29.283 34.597 25.468

nsieve 26.297 23.812 25.562 23.038

Intel Core 2 Duo SL9600 with 2.13

GHz, running OSX 10.7.3 and Apple
clang 3.1

normal threaded
vanilla special vanilla special

spectral-norm 79.102 70.584 56.225 49.245
n-body 53.554 40.956 46.087 34.595

mandelbrot 81.346 52.268 49.870 34.538
fannkuch-redux 161.491 113.476 142.925 88.653

binary-trees 26.761 26.103 25.557 24.810
pi-digits 55.458 39.040 42.625 32.996

richards-loop 52.829 47.525 42.739 37.429
richards-tail 51.020 47.098 43.199 38.105

richards-oo-loop 50.741 48.797 45.186 39.049
richards-oo-tail 51.212 46.116 44.526 36.704

richards-oo-meta 55.146 54.309 47.607 43.233
richards-oo-meta-tail 55.888 50.020 48.313 40.477

richards-oo-meta-cache 55.822 52.331 47.515 41.447
scimark-fft 30.114 23.327 27.469 19.987

scimark-sor 29.574 19.940 25.052 16.944
scimark-mc 35.597 26.606 30.815 21.200

scimark-sparse 39.459 31.499 35.104 28.003
scimark-lu 44.674 27.959 32.581 24.909

nsieve 26.495 23.763 24.792 23.012



optimizing lua using run-time type specialization 15

AMD Athlon 64 X2 6400+ with 2.4
GHz, running Debian 4.1.1-21 and gcc

4.1.2

normal threaded
vanilla special vanilla special

spectral-norm 114.427 116.951 106.927 103.318
n-body 63.000 53.347 54.639 42.891

mandelbrot 116.287 95.578 114.827 88.526
fannkuch-redux 194.420 160.690 176.287 140.189

binary-trees 32.894 34.430 31.510 31.882
pi-digits 76.253 65.924 61.800 49.015

richards-loop 58.012 55.795 53.851 49.463
richards-tail 57.088 56.656 54.015 50.459

richards-oo-loop 55.383 56.400 55.003 51.331
richards-oo-tail 53.707 53.151 53.507 48.663

richards-oo-meta 60.620 62.984 60.152 57.420
richards-oo-meta-tail 58.484 59.716 69.392 55.559

richards-oo-meta-cache 59.804 62.088 58.860 55.951
scimark-fft 33.138 27.826 32.646 26.430

scimark-sor 34.074 28.558 32.614 26.150
scimark-mc 45.231 43.099 40.823 35.826

scimark-sparse 46.563 39.690 42.447 35.410
scimark-lu 51.951 44.059 44.139 35.714

nsieve 35.402 32.458 30.030 28.502

PowerPC 970 2 GHz, running Debian
4.4.5-8 and gcc 4.4.5

normal threaded
vanilla special vanilla special

spectral-norm 17.86 18.80 15.07 15.20
n-body 9.26 7.35 8.19 6.62

mandelbrot 14.29 12.64 12.38 10.03
fannkuch-redux 28.52 24.44 25.37 22.11

binary-trees 13.46 13.86 12.74 12.69
pi-digits 17.96 15.54 15.98 14.11

richards-loop 13.53 11.94 11.95 11.09
richards-tail 12.96 11.69 11.68 11.41

richards-oo-loop 13.53 12.37 11.43 11.73
richards-oo-tail 13.14 11.71 11.26 11.17

richards-oo-meta 15.35 14.01 13.42 13.48
richards-oo-meta-tail 14.96 13.30 13.23 12.94

richards-oo-meta-cache 14.70 13.68 12.63 13.21
scimark-fft 11.73 11.03 10.25 8.99

scimark-sor 12.42 10.68 11.29 9.85
scimark-mc 11.16 10.93 9.78 9.33

scimark-sparse 9.12 7.81 8.11 6.90
scimark-lu 10.01 8.85 9.08 8.26

nsieve 16.73 15.25 16.32 14.82



optimizing lua using run-time type specialization 16

Feroceon 88FR131 1.2 GHz, an em-
bedded ARM device running Debian
4.4.5-2 and gcc 4.4.5

normal threaded
vanilla special vanilla special

spectral-norm 8.81 8.96 9.24 10.04
n-body 10.47 9.11 10.97 9.61

mandelbrot 8.65 7.93 8.83 8.36
fannkuch-redux 8.60 7.38 8.68 7.78

binary-trees 14.40 15.19 14.96 16.25
pi-digits 12.85 11.88 13.03 12.43

richards-loop 14.21 13.38 15.49 14.77
richards-tail 16.19 15.20 17.69 16.71

richards-oo-loop 15.39 14.77 16.30 16.42
richards-oo-tail 15.26 14.13 16.27 15.93

richards-oo-meta 17.60 17.47 18.47 19.11
richards-oo-meta-tail 17.35 16.77 18.28 18.24

richards-oo-meta-cache 17.40 16.73 18.38 18.76
scimark-fft 28.03 25.30 28.74 25.90

scimark-sor 27.90 24.70 28.53 25.76
scimark-mc 27.13 25.80 28.31 28.65

scimark-sparse 42.86 39.33 43.32 41.13
scimark-lu 48.07 43.18 48.39 43.39

nsieve 13.49 12.73 13.60 12.91


	Introduction
	Run-time type specialization
	Prerequisites
	Motivational example
	Experimental Evaluation
	Conclusion
	Relative speed-ups compared to vanilla VM
	Detailed benchmark results

