
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Static Inference of Regular Grammars for Ad Hoc Parsers

MICHAEL SCHRÖDER, TU Wien, Austria
JÜRGEN CITO, TU Wien, Austria

Parsing, the process of structuring a linear representation according to a given grammar, is a fundamental
activity in software engineering. While formal language theory has provided theoretical foundations for
parsing, the most common kind of parsers used in practice are written ad hoc. They use common string
operations for parsing, without explicitly defining an input grammar. These ad hoc parsers are often intertwined
with application logic and can result in subtle semantic bugs. Grammars, which are complete formal descriptions
of input languages, can enhance program comprehension, facilitate testing and debugging, and provide formal
guarantees for parsing code. But writing grammars—e.g., in the form of regular expressions—can be tedious
and error-prone. Inspired by the success of type inference in programming languages, we propose a general
approach for static inference of regular input string grammars from unannotated ad hoc parser source code. We
approach this problem as an intersection of refinement typing and abstract interpretation. We use refinement
type inference to synthesize logical and string constraints that represent regular parsing operations, which we
then interpret with an abstract semantics into regular expressions. Our contributions include a core calculus 𝜆Σ
for representing ad hoc parsers, a formulation of (regular) grammar inference as refinement inference, an
abstract interpretation framework for solving refinement variables, and a set of abstract domains for efficiently
representing the kinds of numeric and string values encountered during regular ad hoc parsing. We implement
our approach in the Panini system and evaluate its efficacy on a benchmark of 202 Python ad hoc parsers.

1 Introduction
Parsing is one of the fundamental activities in software engineering. It is an activity so common
that pretty much every program performs some kind of parsing at one point or another. Yet in
every-day software engineering, only a small minority of programs, mainly compilers and some
protocol implementations, make use of formal grammars to document their input languages or use
formalized parsing techniques such as combinator frameworks [Leijen and Meijer 2001] or parser
generators [Johnson and Sethi 1990; Parr and Quong 1995; Warth and Piumarta 2007]. The vast
majority of parsing code in software today is ad hoc.
Ad hoc parsers are pieces of code that use combinations of common string operations like

slice, index, or trim to effectively perform parsing. A programmer manipulating strings in an
ad hoc fashion would probably not even think about the fact that they are actually writing a
parser. These string-manipulating programs can be found in functions handling command-line
arguments, reading configuration files, or as part of any number of minor programming tasks
involving strings, often deeply entangled with application logic—a phenomenon known as shotgun
parsing [Momot et al. 2016]. They have also been shown to produce subtle and difficult to identify
semantic bugs [Eghbali and Pradel 2020; Kapugama et al. 2022].
A grammar is a complete formal description of all values an input string may assume. It can

elucidate the corresponding parsing code, revealing otherwise hidden features and potentially
subtle bugs or security issues. By focusing on data rather than code, grammars provide a high-level
perspective, allowing programmers to grasp an input language directly, without being distracted
by the mechanics of the parsing process and the intricacies of imperative string manipulation.
Augmenting regular documentation with formal grammars can increase program comprehension
by providing alternative representations for a programming task [Fitter and Green 1979; Gilmore

Authors’ Contact Information: Michael Schröder, TU Wien, Vienna, Austria, michael.schroeder@tuwien.ac.at; Jürgen Cito,
TU Wien, Vienna, Austria, juergen.cito@tuwien.ac.at.

Unpublished working draft. Not for distribution.

2018. ACM 2475-1421/2018/1-ART1
https://doi.org/

2024-10-28 12:21. Page 1 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0003-1496-0531
https://orcid.org/0000-0003-1496-0531
https://doi.org/

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Michael Schröder and Jürgen Cito

Σ
Grammar

∀
String Constraints

Ad Hoc Parser
Source Code

SSA/ANF transform refinement inference grammar inferenceλΣ
Intermediate

Representation

program slicing

Full Source Code
Abstract Domains

String Function
Specifications

Fig. 1. The complete Panini system.

and Green 1984]. Because a grammar is also a generating device, it is possible to construct any
sentence of its language in a finite number of steps—manually or in an automated fashion. Being
able to reliably generate concrete examples of possible inputs is invaluable during testing and
debugging. But despite providing all these benefits, hardly anyone ever bothers to write down a
grammar, even for more complex ad hoc parsers. Grammars share the same fate as most other
forms of specification: they are tedious to write, hard to get right, and seem hardly worth the
trouble—especially for such small pieces of code like ad hoc parsers.
The only type of grammar that people actually routinely write down are regular expressions

[Thompson 1968], probably the biggest and most widely known success story of applied formal
language theory. However, in practical use they are often embedded within bigger pieces of ad hoc
parsing code and thus usually only describe part of the actual input grammar of an ad hoc parser.
But there is another form of specification that we can draw inspiration from: types. Formal

grammars are similar to types, in that an ad hoc parser without a grammar is very much like
a function without a type signature—it might still work, but you will not have any guarantees
about it before actually running the program. Types have one significant advantage over grammars,
however: most type systems offer a form of type inference, allowing programmers to omit type
annotations because they can be automatically recovered from the surrounding context [MacQueen
et al. 2020, § 4]. If we could infer grammars like we can infer types, we would reap all the rewards
of having a complete specification of our program’s input language.

Our Contribution. In this paper, we present a general approach for static inference of regular
string grammars from unannotated ad hoc parser source code. We pose the problem of (regular)
grammar inference as a sub-goal of refinement type inference. During type inference, we synthesize
logical constraints that declaratively represent the parsing operations performed on the input string.
We then interpret this complex first-order formula using an abstract semantics, in order to find a
minimal sub-constraint to use as an input string refinement, rendered as a regular expression.

In brief, the contributions of our work are:

• A core calculus 𝜆Σ for representing ad hoc parsers.
• A formulation of (regular) grammar inference as refinement inference.
• An abstract interpretation framework for solving string refinement variables.
• A set of abstract domains related to regular ad hoc parsing.
• An implementation of our approach in the Panini system.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 2 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Static Inference of Regular Grammars for Ad Hoc Parsers 1:3

Table 1. Python operations as axiomatic 𝜆Σ specifications.

Python 𝜆Σ specification

assert b assert : {𝑏 : B | 𝑏} → 1 assertion
a == b eq : (𝑎 : Z) → (𝑏 : Z) → {𝑐 : B | 𝑐 ⇔ 𝑎 = 𝑏} integer equality
len(s) length : (𝑠 : S) → {𝑛 : N | 𝑛 = |𝑠 |} string length
s[i] charAt : (𝑠 : S) → {𝑖 : N | 𝑖 < |𝑠 |} → {𝑐 : Ch | 𝑐 = 𝑠 [𝑖]} character at index
s == t eqChar : (𝑠 : Ch) → (𝑡 : Ch) → {𝑏 : B | 𝑏 ⇔ 𝑠 = 𝑡} character equality

2 Overview
Figure 1 presents a schematic overview of Panini,1 our end-to-end grammar inference system.
At the center of our approach is 𝜆Σ, a language-agnostic intermediate representation for ad hoc
parsers. It is powerful enough to represent all relevant parsing operations and simple enough to
enable straight-forward refinement type inference. The refinement type system of 𝜆Σ allows us to
synthesize constraints over a parser’s input string—i.e., it allows us to infer a parser’s grammar.

The Panini system can be separated into a front- and a back-end. In the front-end, ad hoc parsers
written in a general-purpose programming language, e.g., Python, are translated into 𝜆Σ programs.
In the back-end, those 𝜆Σ programs are statically analyzed and their input string constraints
extracted. This paper is about the back-end. In short order, we will describe the 𝜆Σ calculus, its
refinement type system, our grammar inference algorithm, and the underlying abstract domains.
To situate this work, we first want to briefly sketch the front-end process.

2.1 The Front End: From Source to 𝜆Σ

After locating an ad hoc parser slice, it is first translated into static single assignment (SSA)
form [Braun et al. 2013] and then, via an SSA-to-ANF transformation [Chakravarty et al. 2004],
into a Panini program. This requires a library of string function specifications that map the source
language’s string operations to equivalent 𝜆Σ functions. Note that it is not necessary to have actual
𝜆Σ implementations of these operations. We only need axiomatic specifications—in the form of type
signatures—to capture those properties of the original functions that are necessary to synthesize
string grammars. Table 1 shows some examples of such axioms, based on the semantics of certain
Python functions. We will use these axioms in the examples throughout this paper.
The front-end transformations (parser slicing, source-to-𝜆Σ translation) and accompanying

axiomatic string function specifications need to be defined and implemented (and proven correct)
only once per source programming language. For the remainder of this paper, we will assume a
Python-to-𝜆Σ transformation and a library of Python string function specifications.

2.2 The Back End: From 𝜆Σ to Grammar
𝜆Σ is a simple 𝜆-calculus with a refinement type system in the style of Liquid Types [Rondon et al.
2008; Vazou et al. 2014]. Refinement types allow us to extend base types with logical constraints.
This is useful to precisely describe subsets of values, as well as track complex relationships between
values, all on the type level. For example, the type of natural numbers can be defined as a subset of
the integers, N = {𝜈 : Z | 𝜈 ≥ 0}, and we can give a precise definition of the length function on
strings using a dependent function type and the string length operator |□| of the refinement logic,

length : (𝑠 : S) → {𝑛 : N | 𝑛 = |𝑠 |}.

1Named in honor of the Sanskrit grammarian Pān. ini [Bhate and Kak 1991], as well as the delicious Italian sandwiches.

2024-10-28 12:21. Page 3 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Michael Schröder and Jürgen Cito

assert s[0] == "a" 𝝀(𝑠 : S). ∀𝑠 . 𝜅 (𝑠) ⇒
let 𝑥 = charAt 𝑠 0 in 0 < |𝑠 | ∧ ∀𝑥 . 𝑥 = 𝑠 [0] ⇒
let 𝑝 = eqChar 𝑥 ‘a’ in ∀𝑝. (𝑝 ⇔ 𝑥 = ‘a’) ⇒
assert 𝑝 𝑝

Fig. 2. A simple Python expression (left) and the equivalent 𝜆Σ program (middle) with an incomplete

verification condition (right) for its inferred type {𝑠 : S | 𝜅 (𝑠)} → 1.

Checking a refinement type reduces to proving a so-called verification condition (VC), a first-order
constraint in the refinement logic generated by the type system. The validity of the VC entails
the correctness of the program’s given and inferred types [Nelson 1980]. For example, in order to
check whether {𝑥 : Z | 𝑥 > 42} (the type of all numbers greater than forty-two) is a subtype of N,
the VC constraint ∀𝑥 . 𝑥 > 42⇒ 𝑥 ≥ 0 has to be verified. For verification to remain practical, the
refinement logic is typically chosen to allow satisfiability modulo theories (SMT) [Barrett et al. 2021],
which means VCs can be discharged using an off-the-shelf constraint solver such as Z3 [De Moura
and Bjørner 2008]. Our system uses quantifier-free linear arithmetic with uninterpreted functions
(QF_UFLIA) [Barrett et al. 2016] for its refinement predicates, extended with a theory of operations
over strings [Berzish et al. 2017].
Refinement Inference. To infer a refinement type for any given term, one must find a predicate
that describes (at most) all possible values the term could have during any (successful) run of
the program. To facilitate this, refinement type systems typically first infer the basic shapes of
all types in the program, using standard type inference à la Hindley-Damas-Milner [Damas and
Milner 1982; Hindley 1969], with placeholder variables standing in for as-yet-unknown refinement
predicates. These placeholder variables—variously called “𝜅 variables” [Cosman and Jhala 2017],
“Horn variables” [Jhala and Vazou 2020], or “liquid type variables” [Rondon et al. 2008]—are also
present in the VC at this point and prevent it from being discharged (since they are unknown). The
type system then tries to find the strongest satisfying assignments for all refinement variables in
the VC constraints, in order to both validate the VC and complete the inferred type.

Example 2.1. The simple 𝜆Σ program if true then 1 else 2 can be inferred to have an incomplete
type of shape {𝜈 : Z | 𝜅 (𝜈)}, where 𝜅 is an unknown refinement variable, together with the VC

(true⇒ ∀𝜈. 𝜈 = 1⇒ 𝜅 (𝜈)) ∧ (false⇒ ∀𝜈. 𝜈 = 2⇒ 𝜅 (𝜈)).
In order to complete the type, we now have to find an assignment for 𝜅. With such a simple
constraint, the refinement solver can easily infer the correct assignment 𝜅 (𝜈) ↦→ 𝜈 = 1, which
validates the VC and produces the final type {𝜈 : Z | 𝜈 = 1}.

Grammar Inference. If a 𝜅 variable stands for an input string refinement, we call this a grammar
variable, because its solution must be some finite description of all strings that are accepted by the
program, i.e., a grammar. To be practical, we would like this grammar to be as complete as possible.

Example 2.2. To illustrate, consider the Python expression in Figure 2 (on the left). Assuming the
function specifications from Table 1, we can transform this expression to an equivalent 𝜆Σ program
(in the middle) with an inferred top-level refinement type of {𝑠 : S | 𝜅 (𝑠)} → 1 and a VC (on the
right) that closely matches the program. In order to complete both the VC and the top-level type, we
have to find an appropriate assignment for the grammar variable 𝜅 . The assignment must take the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 4 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Static Inference of Regular Grammars for Ad Hoc Parsers 1:5

form of a single-argument function constraining the string 𝑠 . It is clear that choosing 𝜅 (𝑠) ↦→ true,
i.e., allowing any string for 𝑠 , is not a valid solution because it does not satisfy the VC. On the
other hand, choosing 𝜅 (𝑠) ↦→ false trivially validates the VC, but it implies that the function could
never actually be called, as no string satisfies the predicate false. One possible assignment could be
𝜅 (𝑠) ↦→ 𝑠 = “a”, which only allows exactly the string “a” as a value for 𝑠 . While this validates the
VC and produces a correct type in the sense that it ensures the program will never go wrong, it
is much too strict: we are disallowing an infinite number of other strings that would just as well
fulfill these criteria (e.g., “aa”, “ab”, and so on). The correct assignment is 𝜅 (𝑠) ↦→ 𝑠 [0] = ‘a’, which
ensures that the first character of the string is “a” but leaves the rest of the string unconstrained.
This is equivalent to the regular language aΣ∗, where Σ is any letter from the input alphabet. Note
that the solution is a minimized version of the top-level consequent in the VC.

The key insight that allows us to find suitable assignments for grammar variables in a general
manner is that the top-level VC for a parser will always be of the form ∀𝑠 . 𝜅 (𝑠) ⇒ 𝜑 , where 𝑠 is
the input string and 𝜑 is a constraint that precisely captures all parsing operations the program
performs on 𝑠 . By simply taking 𝜅 (𝑠) ↦→ 𝜑 , the VC becomes a trivially valid tautology and the
string refinement captures exactly those inputs that the parser accepts. But clearly this solution
is practically useless: we want a succinct predicate in a grammar-like form, but the top-level VC
consequent 𝜑 is a complex term in first-order logic that is basically identical to the program code
itself; it does not lead to any further insight about the parser’s actual input language.

However, we can use 𝜑 as a starting point and reduce it into a simpler predicate by performing
an abstract interpretation of 𝜑 . Our approach utilizes an abstract semantics of first-order formulas
over string constraints in order to soundly eliminate quantifiers and approximate the parser’s
input language. The precision of this approximation depends on the language complexity of the
parser, the ability of the refinement inference system to synthesize program invariants, and the
expressiveness of the underlying abstract value domains.

Example 2.3. To give an idea of how grammar inference works, we present a brief example.
The program shown in Figure 3a is a simple parser written in Python that checks if the first

character of the input string is an ‘a’ and, if so, asserts that the length of the string must be one and
thus the string must be exactly “a”; otherwise, if the first character is not an ‘a’, then the program
asserts that the second character must be a ‘b’, with no further restrictions on the input string.
Note that the Python string indexing operations s[0] and s[1] are themselves types of assertions,
since they will cause the program to crash if the index is out of bounds. This behavior is captured
in the 𝜆Σ equivalent of the source program via its function axioms (Table 1).

Figure 3b shows the parser’s top-level typing derivation (§ 3). The refinement inference judgement,
applied to the parser function and its axioms, results in an incomplete refinement type containing
an unsolved 𝜅 variable, and a verification condition of the form ∀𝑠 . 𝜅 (𝑠) ⇒ 𝜑 , which tells us that
this 𝜅 variable is indeed a grammar variable. We can see that the VC’s consequent 𝜑 captures all of
the parsers explicit and implicit constraints over its program variables.
Finally, Figure 3c shows a (possible) step-by-step reduction of 𝜑 into a simple quantifier-free

predicate using abstract interpretation (§ 4). First, the innermost quantifiers ∀𝜈1,∀𝑛,∀𝜈2, and ∀𝑦 are
eliminated and their quantified variables replaced by semantically equivalent expressions. Then we
eliminate ∀𝑝1, followed by ∀𝑥 . At this point, there are no more quantified variables and we can
fully abstract each occurrence of the only free variable 𝑠 . Finally, we normalize the quantifier-free
predicate into a single abstract string relation, equivalent to a regular expression.

2024-10-28 12:21. Page 5 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Michael Schröder and Jürgen Cito

def parser(s): parser = 𝝀(𝑠 : S).
if s[0] == "a": let 𝑥 = charAt 𝑠 0 in
assert len(s) == 1 let 𝑝1 = eqChar 𝑥 ‘a’ in

else: if 𝑝1 then

assert s[1] == "b" let 𝑛 = length 𝑠 in
let 𝑝2 = eq 𝑛 1 in
assert 𝑝2

>>> parser("") IndexError else

>>> parser("a") ✓ let 𝑦 = charAt 𝑠 1 in
>>> parser("b") IndexError let 𝑝3 = eqChar 𝑦 ‘b’ in
>>> parser("ab") AssertionError assert 𝑝3
>>> parser("bb") ✓

(a) A Python program (left) and its 𝜆Σ equivalent (right).

axioms︷︸︸︷
Γ ⊢ parser ↗

incomplete refinement︷ ︸︸ ︷
{𝑠 : S | 𝜅 (𝑠)} → 1 ⊨

verification condition︷ ︸︸ ︷
∀𝑠 . 𝜅 (𝑠) ⇒ 𝜑

𝜑 � (∀𝜈1. 𝜈1 = 0⇒ 𝜈1 ≥ 0 ∧ 𝜈1 < |𝑠 |) ∧
(∀𝑥 . 𝑥 = 𝑠 [0] ⇒ (∀𝑝1. 𝑝1 = true⇔ 𝑥 = ‘a’⇒
(𝑝1 = true⇒ (∀𝑛. 𝑛 ≥ 0 ∧ 𝑛 = |𝑠 | ⇒ 𝑛 = 1)) ∧
(𝑝1 = false⇒ (∀𝜈2. 𝜈2 = 1⇒ 𝜈2 ≥ 0 ∧ 𝜈2 < |𝑠 |) ∧

(∀𝑦. 𝑦 = 𝑠 [1] ⇒ 𝑦 = ‘b’))))

(b) An incomplete refinement typing of the 𝜆Σ program above.

𝜑
1
{ |𝑠 | > 0 ∧ (∀𝑥 . 𝑥 = 𝑠 [0] ⇒ (∀𝑝1. 𝑝1 = true⇔ 𝑥 = ‘a’⇒

(𝑝1 = true⇒ |𝑠 | = 1) ∧ (𝑝1 = false⇒ |𝑠 | > 1 ∧ 𝑠 [1] = ‘b’)))
2
{ |𝑠 | > 0 ∧ (∀𝑥 . 𝑥 = 𝑠 [0] ⇒ (𝑥 = ‘a’ ∧ |𝑠 | = 1) ∨ (𝑥 ≠ ‘a’ ∧ |𝑠 | > 1 ∧ 𝑠 [1] = ‘b’))
3
{ |𝑠 | > 0 ∧ ((𝑠 [0] = ‘a’ ∧ |𝑠 | = 1) ∨ (𝑠 [0] ≠ ‘a’ ∧ |𝑠 | > 1 ∧ 𝑠 [1] = ‘b’))
4
{ 𝑠 ∈ Σ+ ∧ ((𝑠 ∈ aΣ∗ ∧ 𝑠 ∈ Σ) ∨ (𝑠 ∈ (Σ\a)Σ∗ ∧ 𝑠 ∈ Σ2Σ∗ ∧ 𝑠 ∈ ΣbΣ∗))
5
{ 𝑠 ∈ (a + (Σ\a)bΣ∗)

(c) Possible steps in the abstract interpretation of 𝜑 : (1) eliminate ∀𝜈1,∀𝑛,∀𝜈2,∀𝑦; (2) eliminate ∀𝑝1;
(3) eliminate ∀𝑥 ; (4) abstract 𝑠 ; (5) normalize. Highlights indicate changes relative to previous step.

Fig. 3. An example of grammar inference.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 6 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Static Inference of Regular Grammars for Ad Hoc Parsers 1:7

3 Refinement Inference
We now give a formalization of 𝜆Σ, our core abstraction for representing ad hoc parsers. The
language and its type system were heavily inspired by the Sprite tutorial language by Jhala and
Vazou [2020], and incorporate ideas from various other refinement type systems [Cosman and
Jhala 2017; Dunfield and Krishnaswami 2021; Montenegro et al. 2020]. Our main contribution in
this area is an extended refinement variable solving procedure that synthesizes precise grammars
for input string constraints (§§ 3.3 and 4).

3.1 Syntax
𝜆Σ is a small 𝜆-calculus in A-normal form (ANF) [Bowman 2022; Flanagan et al. 1993]. It exists
solely for type synthesis and its programs are neither meant to be executed nor written by hand.
Its syntax, collected in Figure 4, is thus minimal and has few affordances.

Values are either primitive constants or variables. Terms are comprised of values and the usual
constructs: function applications, function abstractions, bindings, recursive bindings, and branches.
Applications are in ANF as a natural result of the SSA translation performed on the original source
code (see § 2.1), but we also generally enforce this in the syntax to simplify the typing rules (§ 3.2).
𝜆Σ terms have no type annotations, except on 𝝀-binders and recursive rec-binders, whose (base)
types we assume are inferred in the pre-processing phase or provided by the programmer.
The primitive Base Types are 1 (unit), B (Boolean), Z (integer), Ch (character), and S (string).

Types are formed by decorating base types with refinement predicates, or by constructing (depen-
dent) function types, whose output types can refer to input types.
Predicates are terms in a Boolean logic, with the usual Boolean connectives, plus (in)equality

relations and arithmetic comparisons between predicate expressions, membership queries for
regular expression matching, applications of unknown 𝜅 variables, and existential quantifiers,
which arise during the Fusion phase of 𝜅 solving (§ 3.3). Both 𝜅 applications and existentials are not
part of the user-visible surface syntax. Expressions within predicates are built from lifted values
and functions, in particular linear integer arithmetic and operations over strings, e.g., length |□|,
character-at-index □[□], substring □[□..□], etc. To simplify the presentation, predicate expressions
are not further syntactically stratified, but are assumed to always occur well-typed (which is assured
by the implementation).
VC generation (§ 3.2) results in Constraints that are Horn clauses [Bjørner et al. 2015] in

Negation Normal Form (NNF), basically tree-like conjunctions of refinement predicates, where
each root-to-leaf path is a Constrained Horn Clause (CHC). This representation of VCs is due to
Cosman and Jhala [2017], who cleverly employ the constraints’ nested scoping structure to make
𝜅 solving tractable.

3.2 Type System
The main purpose of the type system of 𝜆Σ is to generate constraints, in particular input string
constraints for parser functions. Thus, the type system is focused on inference/synthesis, rather
than type checking. Terms need only be minimally annotated, at 𝜆-abstractions and recursive
bindings. The types of applied functions need to be known, however, and available in the typing
context (see the discussion of axioms, § 2.1 and Table 1). Our system borrows heavily from Liquid
Haskell [Vazou et al. 2014] and the expositions given by Cosman and Jhala [2017] and Jhala and
Vazou [2020]. We combine typing rules and VC generation into one syntax-driven declarative
system of inference rules, given in Figure 5 and discussed below.

𝑡1 ⩽ 𝑡2 ⊨𝑐 Subtyping. A type 𝑡1 is a subtype of 𝑡2 (meaning, the values denoted by 𝑡1 are
subsumed by 𝑡2), if the entailment constraint 𝑐 is satisfied. In the Sub/Base case, this means the

2024-10-28 12:21. Page 7 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Michael Schröder and Jürgen Cito

Values 𝑣 ::= 𝑥,𝑦, 𝑧, . . . variables
| . . . varies . . . constants

Terms 𝑒 ::= 𝑣 value
| 𝑒 𝑣 application
| 𝝀(𝑥 : 𝑏). 𝑒 abstraction
| let 𝑥 = 𝑒1 in 𝑒2 binding
| rec 𝑥 : 𝑡 = 𝑒1 𝑒2 recursion
| if 𝑣 then 𝑒1 else 𝑒2 branch

Base Types 𝑏 ::= 1 | B | Z | Ch | S

Types 𝑡 ::= {𝑥 : 𝑏 | 𝑝} refined base
| (𝑥 : 𝑡1) → 𝑡2 dependent function

Predicates 𝑝 ::= true | false Boolean constants
| 𝑝1 ∧ 𝑝2 | 𝑝1 ∨ 𝑝2 connectives
| 𝑝1 ⇒ 𝑝2 | 𝑝1 ⇔ 𝑝2 implications
| ¬𝑝 negation
| 𝑤1 = 𝑤2 | 𝑤1 ≠ 𝑤2 (in)equality
| 𝑤1 < 𝑤2 | 𝑤1 ≤ 𝑤2 arithmetic comparison
| 𝑤 ∈ RE regular language membership
| 𝜅 (𝑣) 𝜅 application
| ∃(𝑥 : 𝑏). 𝑝 existential quantification

Expressions 𝑤 ::= 𝑣 value
| 𝑓 (𝑤) function

Constraints 𝑐 ::= 𝑝 predicate
| 𝑐1 ∧ 𝑐2 conjunction
| ∀(𝑥 : 𝑏) . 𝑝 ⇒ 𝑐 universal implication

Fig. 4. Syntax of 𝜆Σ terms, types, and refinements.

refinement predicate of 𝑡1 must imply the predicate of 𝑡2, for all possible values the types can have.
In the Sub/Fun case, where the contra-variant input constraint is joined with the co-variant output
constraint, we add an additional implication to the output constraint, strengthening it with the
supertype’s input predicate. This is done using a generalized implication operation (𝑥 :: 𝑡) ⇒ 𝑐 ,
which simply ensures that only base types are bound to quantifiers in the refinement logic.

Γ ⊢ 𝑡 ▷ 𝑡 Template Generation. To enable complete type synthesis for all intermediate terms, it
is sometimes necessary to turn a type 𝑡 into a template 𝑡 , where the refinement predicate is denoted
by a placeholder variable whose resolution is deferred (see §§ 2.2, 3.3, and 4). The rule Kap/Base
introduces a fresh 𝜅 variable, representing an 𝑛-ary relation between the type itself and all variables
in the current environment Γ. Usually this environment is empty, but if 𝑡 is a function, Kap/Fun
recursively generates input and output templates, extending the environment along the way.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 8 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Static Inference of Regular Grammars for Ad Hoc Parsers 1:9

𝑡1 ⩽ 𝑡2 ⊨𝑐 Subtyping

{𝜈1 : 𝑏 | 𝑝1} ⩽ {𝜈2 : 𝑏 | 𝑝2} ⊨∀(𝜈1 : 𝑏). 𝑝1 ⇒ 𝑝2 [𝜈2 ≔ 𝜈1]
Sub/Base

𝑠2 ⩽ 𝑠1 ⊨𝑐𝑖 𝑡1 [𝑥1 ≔ 𝑥2] ⩽ 𝑡2 ⊨𝑐𝑜

(𝑥1 : 𝑠1) → 𝑡1 ⩽ (𝑥2 : 𝑠2) → 𝑡2 ⊨𝑐𝑖 ∧ ((𝑥2 :: 𝑠2) ⇒ 𝑐𝑜)
Sub/Fun

(𝑥 :: 𝑡) ⇒ 𝑐
def
=

{
∀(𝑥 : 𝑏). 𝑝 [𝜈 ≔ 𝑥] ⇒ 𝑐 if 𝑡 ≡ {𝜈 : 𝑏 | 𝑝},
𝑐 otherwise.

Γ ⊢ 𝑡 ▷ 𝑡 Template Generation

𝑡 ▷ 𝑡
def
= ∅ ⊢ 𝑡 ▷ 𝑡

𝜅 is a fresh variable of sort 𝑏 × 𝑡
𝑥 : 𝑡 ⊢ {𝜈 : 𝑏 | 𝑝} ▷ {𝜈 : 𝑏 | 𝜅 (𝜈, 𝑥)}

Kap/Base
Γ ⊢ 𝑡1 ▷ 𝑡1 Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑡2 ▷ 𝑡2

Γ ⊢ (𝑥 : 𝑡1) → 𝑡2 ▷ (𝑥 : 𝑡1) → 𝑡2
Kap/Fun

Γ ⊢ 𝑒 ↗ 𝑡 ⊨𝑐 Type/Constraint Synthesis

Γ(𝑥) = 𝑡

Γ ⊢ 𝑥 ↗ self (𝑥, 𝑡) ⊨true
Syn/Var

prim(𝑐) = 𝑡

Γ ⊢ 𝑐 ↗ 𝑡 ⊨true
Syn/Con

Γ ⊢ 𝑒 ↗ (𝑦 : 𝑡1) → 𝑡2 ⊨𝑐𝑒 Γ ⊢ 𝑣 ↗ 𝑡𝑣 𝑡𝑣 ⩽ 𝑡1 ⊨𝑐𝑣

Γ ⊢ 𝑒 𝑣 ↗ 𝑡2 [𝑦 ≔ 𝑣] ⊨𝑐𝑒 ∧ 𝑐𝑣
Syn/App

𝑡1 ▷ 𝑡1 Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑒 ↗ 𝑡2 ⊨𝑐2

Γ ⊢ 𝝀(𝑥 : 𝑡1). 𝑒 ↗ (𝑥 : 𝑡1) → 𝑡2 ⊨(𝑥 :: 𝑡1) ⇒ 𝑐2
Syn/Lam

Γ ⊢ 𝑒1 ↗ 𝑡1 ⊨𝑐1
Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑒2 ↗ 𝑡2 ⊨𝑐2 𝑡2 ▷ 𝑡2 𝑡2 ⩽ 𝑡2 ⊨̂𝑐2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ↗ 𝑡2 ⊨𝑐1 ∧ ((𝑥 :: 𝑡1) ⇒ 𝑐2 ∧ 𝑐2)
Syn/Let

𝑡1 ▷ 𝑡1 Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑒1 ↗ 𝑡1 ⊨𝑐1 𝑡1 ⩽ 𝑡1 ⊨̂𝑐1
Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑒2 ↗ 𝑡2 ⊨𝑐2 𝑡2 ▷ 𝑡2 𝑡2 ⩽ 𝑡2 ⊨̂𝑐2

Γ ⊢ rec 𝑥 : 𝑡1 = 𝑒1 𝑒2 ↗ 𝑡2 ⊨((𝑥 :: 𝑡1) ⇒ 𝑐1 ∧ 𝑐1) ∧ ((𝑥 :: 𝑡1) ⇒ 𝑐2 ∧ 𝑐2)
Syn/Rec

Γ ⊢ 𝑥 ↗ B Γ ⊢ 𝑒1 ↗ 𝑡1 ⊨𝑐1 𝑡1 ▷ 𝑡 𝑡1 ⩽ 𝑡 ⊨̂𝑐1
Γ ⊢ 𝑒2 ↗ 𝑡2 ⊨𝑐2 𝑡2 ⩽ 𝑡 ⊨̂𝑐2

Γ ⊢ if 𝑥 then 𝑒1 else 𝑒2 ↗ 𝑡 ⊨(𝑥 = true⇒ 𝑐1 ∧ 𝑐1) ∧ (𝑥 = false⇒ 𝑐2 ∧ 𝑐2)
Syn/If

Fig. 5. Typing rules for 𝜆Σ.

2024-10-28 12:21. Page 9 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Michael Schröder and Jürgen Cito

Γ ⊢ 𝑒 ↗ 𝑡 ⊨𝑐 Type/Constraint Synthesis. Given a typing context Γ mapping values to types,
and a term 𝑒 , we can synthesize a type 𝑡 whose correctness is implied by the constraint 𝑐 . The
rule Syn/Con synthesizes built-in primitive types, denoted by prim(𝑐) in the obvious way, e.g.,
prim(0) def

= {𝜈 : Z | 𝜈 = 0} and so on. Syn/Var retrieves the type of a variable from the current
context, using selfification to produce the most precise possible type [Ou et al. 2004]. The self

function lifts the variable into the refinement, allowing each occurrence of the variable in different
branches of the program to be precisely typed.

self (𝑥, 𝑡) def
=

{
{𝜈 : 𝑏 | 𝑝 ∧ 𝜈 = 𝑥} if 𝑡 ≡ {𝜈 : 𝑏 | 𝑝},
𝑡 otherwise.

Syn/App synthesizes the result type of a function application, where the given input can be a
subtype of the function’s declared input type. In the result type, the declared input variable is
replaced by the given input, using standard capture-avoiding substitution. Note that because our
terms are in ANF, no arbitrary expressions are introduced into the type during this substitution.
The synthesized VC is simply a conjunction of the function’s VC and the constraint created by
the subtyping judgement. Syn/Lam produces a function type whose input refinement is a fresh
𝜅 variable, based on the annotation on the 𝝀-binder. Syn/Let first synthesizes the type 𝑡1 for the
bound term, then the type 𝑡2 for the expression’s body under an environment where 𝑥 is bound
to 𝑡1. To ensure that 𝑥 does not escape its scope, the whole let-expression is given the templated
type 𝑡2, a supertype of 𝑡2 with a 𝜅 variable in place of its refinement. Syn/Rec is similar to Syn/Let,
with the addition that we first assume the bound term’s type as a placeholder 𝑡1 based on the
annotation 𝑡1 on the binder, before synthesizing it as 𝑡1, allowing for recursion in the bound term.
Syn/If synthesizes the type of the whole conditional as a supertype of both branches. In the VC,
we imply the then-branch’s constraints if the condition is true, and the else-branch’s constraints
if the condition is false. The 𝜅 variable in the templated supertype 𝑡 allows this path-sensitive
information to travel back upwards.

3.3 Variable Solving
Before the synthesized VCs can be sent off to an SMT solver to be proven valid, we have to replace
all 𝜅 variables with concrete refinement predicates. Some of these variables represent input string
refinements and this is the point where we need to find the grammars describing those strings.

Algorithm 1 gives a high-level overview of the VC solving procedure. We start with an incomplete
VC constraint 𝑐 (i.e., a constraint containing 𝜅 variables) and an initial 𝜅 assignment 𝜎 (usually
empty). We use Fusion [Cosman and Jhala 2017] and predicate abstraction [Rondon et al. 2008]
to deal with non-grammar 𝜅 variables. For grammar variables, we use our abstract interpretation
approach detailed in § 4 to find an abstract solution for 𝜅 , i.e., a grammar. If the complete VC, with
all 𝜅 variables replaced by their solutions, is satisfiable (modulo theories) then the inferred type is
valid and 𝜎 contains concrete assignments for all of the type’s refinement variables. Otherwise, no
valid solution could be found, either because there does not exist one (e.g., the program has a type
error) or due to insufficient invariants or limits of the abstract domain.

4 Grammar Inference
Given a program 𝑃 with a partially inferred refinement type {𝑠 : S | 𝜅 (𝑠)} → 1 and an incomplete
verification condition of the form ∀(𝑠 : S). 𝜅 (𝑠) ⇒ 𝜑 , our goal is to find an assignment for 𝜅 that
both validates the VC and meaningfully refines the type of 𝑠 . Trivially, the assignment 𝜅 (𝑠) ↦→ false

always validates the VC, but is hardly a meaningful refinement. Assuming that 𝑃 is a parser, we
ideally want an assignment for 𝜅 that constrains 𝑠 in a way that

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 10 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Static Inference of Regular Grammars for Ad Hoc Parsers 1:11

Algorithm 1 Solve an incomplete VC and find all 𝜅 assignments
1: procedure Solve(𝑐, 𝜎)
2: 𝑐 ← 𝜎 (𝑐)
3: 𝑐 ← Fusion(𝑐) ⊲ eliminate local acyclic 𝜅 variables [Cosman and Jhala 2017]
4: 𝜎 ← 𝜎 ∪ Liqid(𝑐) ⊲ solve residual non-grammar 𝜅 variables [Rondon et al. 2008]
5: 𝑐 ← 𝜎 (𝑐)
6: for all constraints in 𝑐 of the form ∀(𝑠 : S). 𝜅 (𝑠) ⇒ 𝜑 do

7: 𝜎̂ ← J𝜑K♯ ⊲ infer grammar using abstract interpretation [§ 4]
8: 𝜎 ← 𝜎 [𝜅 (𝑠) ↦→ 𝑠 ∈ 𝜎̂ (𝑠)]
9: 𝑐 ← 𝜎 (𝑐)
10: end for

11: if Satisfiable(𝑐) then return Valid else return Invalid
12: end procedure

(1) disallows any string rejected by 𝑃 (soundness) and
(2) allows all strings accepted by 𝑃 (completeness).

In other words, we want a refinement for 𝑠 that is a grammar for 𝑃 , i.e., a finite description of the
(possibly infinite) set of strings contained in the language 𝐿(𝑃).

Luckily, the VC’s consequent 𝜑 already appears to be what we are looking for: it is a first-order
formula over a free string variable 𝑠 that exactly captures the semantics of the parsing operations
performed by 𝑃 on 𝑠 . Assuming that 𝜑 itself does not contain any other unsolved 𝜅 variables (these
having been eliminated by prior inference and solving steps, e.g., Fusion and predicate abstraction,
see § 3.3), as well as the correctness of all involved axiomatic string function specifications (Table 1),
then, under some model 𝔐 of the refinement logic (e.g., linear integer arithmetic and basic string
operations), by construction,

𝔐, [𝑠 ↦→ 𝑡] |= 𝜑 ⇐⇒ 𝑃 successfully parses 𝑡 ⇐⇒ 𝑡 ∈ 𝐿(𝑃).
The parser 𝑃 represented by 𝜑 accepts some particular string 𝑡 if and only if 𝜑 is true under an
assignment of 𝑠 to 𝑡 . The set of all strings that satisfy 𝜑 is exactly the language 𝐿(𝑃) accepted by 𝑃 .
Thus, 𝜑 is technically a complete grammar for 𝑃 .

Practically, however, 𝜑 makes for a rather poor grammar. It is a first-order formula close in size
and structure to the parsing program 𝑃 itself. While 𝜅 (𝑠) ↦→ 𝜑 is an ideal assignment in the sense
that it is both sound and complete, it results in a rather impractical refinement that would puzzle a
human programmer. The presence of quantifiers within 𝜑 complicates any further analysis.

In order to obtain a better grammar for 𝐿(𝑃), we will use𝜑 as a starting point to derive a quantifier-
free predicate that is much simpler than 𝜑 but semantically equivalent. They key components of
our approach are:

(1) an abstract interpretation of certain first-order string formulas as grammars (§ 4.1),
(2) an extended constraint syntax that mixes symbolic and abstract representations (§ 4.2),
(3) an abstract semantics of relations between predicate expressions (§ 4.3),
(4) a procedure for eliminating quantified variables by abstract substitution (§ 4.4),
(5) abstract value representations of all base types (§ 5).

4.1 Abstract Interpretation

Background. Abstract interpretation [Cousot and Cousot 1977, 1979] is a well-established frame-
work for formalizing static program analyses. It involves the sound approximation of all possible

2024-10-28 12:21. Page 11 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Michael Schröder and Jürgen Cito

Table 2. Summary of abstract domains in Panini

base type abstract domain

unit ℘(1) = 1̂ the two-element lattice § 5.1
Booleans ℘(B) = B̂ Boolean subset lattice § 5.2
integers ℘(Z) ⊇ Ẑ open-ended interval lists § 5.3

characters ℘(Ch) = Ĉ Unicode character sets § 5.4
strings ℘(S) ⊇ Ŝ regular expressions over Ĉ § 5.5

states of a program, usually trading precision for efficiency. The concrete semantics of a program P
are defined by a semantic function J□K : P → ℘(C), which produces a power set of concrete
values C. The concrete domain ℘(C) can be approximated by an abstract domain A, with an ab-
straction function 𝛼 : ℘(C) → A and a concretization function 𝛾 : A → ℘(C) mapping elements
between the domains. Usually,A is a complete lattice ⟨A, ⊑,⊓,⊔,⊥,⊤⟩ and the two domains form
a Galois connection ⟨℘(C), ⊆⟩ −−−→←−−−𝛼

𝛾

⟨A, ⊑⟩, which intuitively means that relationships between el-
ements of ℘(C) also hold between the corresponding abstracted elements ofA. We can then define
an abstract semantics J□K♯ : P → A to abstractly interpret programs and directly produce abstract
values. The abstract interpretation is sound iff, for all programs P, 𝛼 (JPK) ⊑ JPK♯, and it is also
complete iff 𝛼 (JPK) = JPK♯. Completeness in this context means that the abstract semantics incurs
no loss of precision relative to the underlying abstract domain, i.e., the abstract semantics can take
full advantage of the whole domain. Finally, an abstract interpretation is exact iff JPK = 𝛾 (JPK♯),
meaning that the abstraction loses no information and the abstract semantics exactly captures the
concrete semantics of the program [Cousot 1997; Giacobazzi and Quintarelli 2001].
Parser Semantics. In our case, the kind of program we want to abstractly interpret is a parser 𝑃
represented by a first-order formula 𝜑 . We take the concrete semantics J𝜑K to be an assignment 𝜎
of free variables to values, and in particular denote the parser’s input string by the free variable 𝑠 ,
such that

𝔐, 𝜎 |= 𝜑 ⇐⇒ 𝜎 ∈ J𝜑K ⇐⇒ 𝜎 (𝑠) ∈ 𝐿(𝑃).
Trying to compute J𝜑K directly will generally result in an infinite set of values. Hence our desire
for an abstract semantics J𝜑K♯ that produces a finite approximation of this set such that

𝔐, 𝜎̂ |= 𝜑 ⇐= 𝜎̂ = J𝜑K♯ =⇒ 𝜎̂ (𝑠) ⊆ 𝐿(𝑃),

where 𝜎̂ is an assignment of free variables to abstract values. In particular, 𝜎̂ (𝑠) is now a grammar
describing (a subset of) the strings in 𝐿(𝑃).
The completeness of the approximation 𝜎̂ depends on the underlying abstract domains. We

give a brief summary of the domains currently used by Panini in Table 2 and provide complete
definitions in § 5. Note that our abstract string domain Ŝ represents sets of strings with regular
expressions. This means that our approach must under-approximate any 𝐿(𝑃) above regular in the
Chomsky hierarchy [Chomsky and Schützenberger 1963]. For super-regular languages, we can
only infer a partial grammar representing a regular subset, if one exists. However, if 𝐿(𝑃) is (at
most) regular, then we can infer a complete grammar for 𝑃 .
Using our abstract interpretation, we can construct a finite but quantifier-free solution for the

refinement variable,
𝜅 (𝑠) ↦→ 𝑠 ∈ 𝜎̂ (𝑠), where 𝜎̂ = J𝜑K♯ .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 12 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Static Inference of Regular Grammars for Ad Hoc Parsers 1:13

J𝜑K♯ �
{
𝑥 ↦→ J𝜑K↑𝑥

�� 𝑥 ∈ vars(𝜑)}
J𝑃1 ∧ 𝑃2K↑𝑥 � J𝑃1K↑𝑥 ⊓ J𝑃2K↑𝑥 if 𝑃1, 𝑃2 quantifier-free
J𝑃1 ∨ 𝑃2K↑𝑥 � J𝑃1K↑𝑥 ⊔ J𝑃2K↑𝑥 if 𝑃1, 𝑃2 quantifier-free

J¬𝑃K↑𝑥 � ¬ J𝑃K↑𝑥 if 𝑃 quantifier-free
J𝜑K↑𝑥 � Jqelim(𝜑)K↑𝑥

J𝜌K↑𝑥 �
{
𝜔, as defined by domain;
⟨𝑥 : 𝜌⟩ , otherwise.

Fig. 6. Abstract semantics of 𝜆Σ constraints.

Constraints 𝜑 ::= true | false Boolean constants
| 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 connectives
| 𝜑1 ⇒ 𝜑2 | 𝜑1 ⇔ 𝜑2 implications
| ¬𝜑 negation
| ∃𝑥 . 𝜑 existential quantification
| ∀𝑥 . 𝜑 universal quantification
| 𝜌 relations

Relations 𝜌 ::= 𝜔1 ⊲⊳ 𝜔2 where ⊲⊳ ∈
{
=,≠, <, ≤, ∈, ∉, ≬, ∥

}
Expressions 𝜔 ::= 𝑥,𝑦, 𝑧, . . . variables

| 𝑐 concrete value
| 𝑐 abstract value
| ⟨𝑥 : 𝜌⟩ abstract relation
| 𝑓 (𝜔) function

Fig. 7. Extended syntax of 𝜆Σ constraints.

The definition of the abstract semantics function J□K♯ is given in Figure 6. It depends on a novel
variable-focused relational semantics J□K↑□ and a quantifier elimination procedure qelim(□). We
describe these in the remainder of this section, after establishing some syntactic extensions to
𝜆Σ constraints.

4.2 Extended Constraint Syntax
We extend the formal syntax of predicates and constraints from Figure 4 to include abstract values
and relations. The extended syntax is given in Figure 7.

Constraints 𝜑 , in addition to Boolean constants and the usual logical connectives, include both
universal and existential quantification, and generalized relations between predicate expressions.

2024-10-28 12:21. Page 13 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Michael Schröder and Jürgen Cito

There are no 𝜅 applications at this point. The base types of all bound variables are known, but we
elide them from the presentation to reduce clutter.
Expressions 𝜔 , in addition to variables and concrete values, now include abstract values 𝑐

and abstract relations ⟨𝑥 : 𝜌⟩. Abstract values 𝑐 are taken from our abstract domains (§ 5) and are
representations of potentially infinite sets of concrete values. For example, the abstract value [1,∞]
represents an infinite set of integers {1, 2, 3, . . . } and the abstract string Σ∗a represents the set of all
strings that end with the character ‘a’. For functions, we assume the usual notational conveniences,
e.g., we write 𝑎 + 𝑏 for +(𝑎, 𝑏) and |𝑠 | for str.len(𝑠) and so on. If an abstract value appears in a
function, it lifts the whole expression into the abstract realm, e.g., 𝑥 + [1,∞] represents the set
of expressions {𝑥 + 1, 𝑥 + 2, 𝑥 + 3, . . . }. Abstract relations ⟨𝑥 : 𝜌⟩ similarly represent sets of values,
specifically those values that are described by the given relation. For example, the abstract relation
⟨𝑥 : 𝑥 > 5⟩ represents “the set of all values 𝑥 for which 𝑥 > 5 is true” and ⟨𝑖 : 𝑠 [𝑖] = 𝑐⟩ represents
the set of all indexes 𝑖 at which the string in variable 𝑠 contains the character in variable 𝑐 .
Relations 𝜌 are comprised of the usual (in)equality and arithmetic comparisons, as well as set

(non)inclusion (∈, ∉) and (non-)empty intersection (≬, ∥). The latter are simply abbreviations for
common set operations, with

𝐴 ≬ 𝐵 ≡ 𝐴 ∩ 𝐵 ≠ ∅, meaning “𝐴 and 𝐵 have at least one element in common,”
𝐴 ∥ 𝐵 ≡ 𝐴 ∩ 𝐵 = ∅, meaning “𝐴 and 𝐵 have no elements in common.”

Since abstract values are essentially sets, relating them works the same way. Note the distinction
between 𝑥 ∈ [0,∞] (“𝑥 is a member of the set of natural numbers”), 𝑥 = [0,∞] (“𝑥 is the set of
natural numbers”), and 𝑥 ≬ [0,∞] (“𝑥 has at least one element in common with the set of natural
numbers”).
Normalization. Both expressions and relations can be normalized by partial evaluation. If abstract
values are involved, the semantics of the particular abstract domains apply. If possible, relations
are fully abstracted using their relational semantics (§ 4.3).

1 + 𝑥 − 2 { 𝑥 − 1
|“abc”| { 3

𝑥 − 1 ∈ [1, 5] { 𝑥 ∈ [1, 5] + 1 { 𝑥 ∈ [2, 6]
𝑥 < 5 { 𝑥 ∈ [−∞, 4]

|𝑠 | + 1 > 2 { |𝑠 | > 1 { 𝑠 ∈ Σ+
[1, 2] ≬ ⟨𝑖 : 𝑠 [𝑖] = ‘a’⟩ { 𝑠

[
[1, 2]

]
∋ ‘a’ { 𝑠 ∈ ΣΣ?aΣ∗

In the remainder, we assume that expressions and relations are always fully normalized.

4.3 Relational Semantics
The concrete semantics J𝜌K of a single relation are all those assignments of the relation’s free
variables that make the relation true, e.g.,

J𝑥 > 3K � {𝑥 ↦→ 4, 𝑥 ↦→ 5, . . . },
r
|𝑠 | > 3

z
� {. . . , 𝑠 ↦→ “abaa”, 𝑠 ↦→ “abab”, . . . }

r
|𝑠 | > 𝑥

z
�

{
. . . ,

(
𝑠 ↦→ “ab”
𝑥 ↦→ 0

)
,

(
𝑠 ↦→ “ab”
𝑥 ↦→ 1

)
, . . .

}
.

Unfortunately, constructing an abstract semantics even for such simple relations is decidedly non-
trivial. It requires complex relational domains to capture just a limited set of constraints between
multiple variables [Cousot and Halbwachs 1978; Logozzo and Fähndrich 2010; Simon et al. 2003].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 14 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Static Inference of Regular Grammars for Ad Hoc Parsers 1:15

Fortunately, we do not actually need a full abstract semantics that condenses relations into
singular abstract values. For our purposes, it is sufficient to consider relational semantics on a
per-variable basis. To this end, we introduce a variable-focused abstract semantics function J𝜌K↑𝑥
that for a given variable 𝑥 occurring free in 𝜌 produces an abstract expression whose concrete
values are exactly those that could be substituted for 𝑥 to make 𝜌 true, i.e.,

𝔐, [𝑥 ↦→ 𝑐] |= 𝜌 ⇐⇒ 𝑐 ∈ J𝜌K↑𝑥 .
Abstract relations ⟨𝑥 : 𝜌⟩ provide a convenient “default” implementation,

J𝜌K↑𝑥 � ⟨𝑥 : 𝜌⟩ ,
since by definition they exactly capture the abstract semantics of the relation 𝜌 for the given
variable 𝑥 . But we can often do better than this. Depending on the underlying abstract domains
and domain-specific knowledge about the involved operations, more specific definitions of J□K↑□
are possible (§ 5). For example, for the domains of regular expressions and integers, we can define
precise abstractions for simple string length relations,

r
|𝑠 | = 𝑛

zx𝑠 � Σ𝑛,
r
|𝑠 | ≥ 𝑛

zx𝑠 � Σ𝑛Σ∗,
r
|𝑠 | ≤ 𝑛

zx𝑠 � Σ0 + Σ1 + · · · + Σ𝑛,

where 𝑛 is a meta-variable standing for some concrete integer value. With these and other domain-
specific semantics, we can construct variable-focused abstractions for the earlier examples. Note
how in all cases the abstraction effectively eliminates the chosen variable:

J𝑥 > 3K↑𝑥 � [4,∞]
r
|𝑠 | > 3

zx𝑠 � Σ4Σ∗
r
|𝑠 | > 𝑥

zx𝑠 � ⟨𝑠 : |𝑠 | > 𝑥⟩
r
|𝑠 | > 𝑥

zx𝑥 � |𝑠 | − [1,∞]
4.4 Quantifier Elimination
Figure 8 presents our procedure for eliminating quantifiers by abstract substitution. The top-level
function qelim traverses a given constraint to eliminate all of its quantifiers. During this traversal,
we apply standard logical transformations to simplify the problem.

∀𝑥 .𝜑 ⇐⇒ ¬∃𝑥 .¬𝜑 (DeMorgan’s law)
∃𝑥 .∨∧𝜌 ⇐⇒ ∨∃𝑥 .∧𝜌 (distributivity of ∃ over ∨)

The actual variable elimination happens in qelim1, where we only need to consider a single
conjunctive set of relations 𝑅. To eliminate a particular variable 𝑥 from the relations in this set, we
first compute the 𝑥-relative relational semantics J𝜌K↑𝑥 for all relations 𝜌 in the subset of relations in
𝑅 that contain 𝑥 as a free variable. This results in a set 𝐸 of (abstract) expressions, all representing
some aspect of 𝑥 in 𝑅. The expressions in 𝐸 do not contain the variable 𝑥 but they might contain
other free variables. We now generate all unordered pairwise combinations of expressions in 𝐸

and create a new equality relation between each pair of expressions (using a relational operator
appropriate for the pair’s types), resulting in a set of relations 𝑅 that contain no reference to 𝑥 yet
preserve the semantics of the original conjunction of relations. Finally, we return 𝑅 together with
those relations in 𝑅 that did not contain 𝑥 in the first place.

5 Abstract Domains
We now define abstract domains for each of the base types in our system. Each domain efficiently
captures (possibly infinite) sets of concrete values of the corresponding type, lifts certain operations
of the type to the abstract domain, and defines some abstract relational semantics J□K ↑□ for
expression involving those operations.

2024-10-28 12:21. Page 15 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Michael Schröder and Jürgen Cito

qelim(∃𝑥 . 𝜑) �
∨{

qelim1(𝑥, 𝑅)
�� 𝑅 ∈ dnf (qelim(𝜑))}

qelim(∀𝑥 . 𝜑) � qelim(¬∃𝑥 . ¬𝜑)
qelim(𝜑1 ∧ 𝜑2) � qelim(𝜑1) ∧ qelim(𝜑2)
qelim(𝜑1 ∨ 𝜑2) � qelim(𝜑1) ∨ qelim(𝜑2)

qelim(¬𝜑) � ¬qelim(𝜑)
qelim(𝜌) � 𝜌

qelim(true) � true

qelim(false) � false

qelim1(𝑥, 𝑅) � 𝑅 ∪ {𝜌 ∈ 𝑅 | 𝑥 ∉ vars(𝜌)}
where

𝑅 =

{
𝜔1 ⊲⊳ 𝜔2

���� (𝜔1, 𝜔2) ∈
(
𝐸

2

)}
⊲⊳ ∈ {=, ∈, ∋, ≬}

𝐸 =
{
J𝜌K↑𝑥

�� 𝜌 ∈ 𝑅, 𝑥 ∈ vars(𝜌)}
Fig. 8. Quantifier elimination

To simplify the definitions and avoid boilerplate repetition, we generally assume that expressions
have already been arranged in a uniform manner and are fully normalized (§ 4.2). We also forego
subscripting domain-specific operations and elements if there is no ambiguity, e.g., we write ⊤
instead of differentiating ⊤1,⊤B, etc.

5.1 Unit
The abstract unit type 1̂ simply adds a bottom element, forming the two-element lattice, with

𝛼 = 𝛾 = id, J𝑥 = unitK↑𝑥� unit, J𝑥 ≠ unitK↑𝑥� ⊥.

5.2 Booleans
The Boolean subset lattice ⟨℘(B), ⊆⟩ is a complete abstraction of the Boolean values, adding ∅
and {true, false} as bottom and top elements, respectively, and forming a complete complemented
lattice via subset inclusion and set complement. For consistency with the other definitions, we
call this abstraction B̂ and will use the notation ⟨B̂, ⊑,⊥,⊤,⊔,⊓,¬⟩ for the lattice elements and
operations. The abstract semantics are defined by

𝛼 = 𝛾 = id, J𝑥 = 𝑏K↑𝑥� {𝑏}, J𝑥 ≠ 𝑏K↑𝑥� {¬𝑏}.

5.3 Integers
Any concrete set of contiguous integers {𝑥 ∈ Z | 𝑎 ≤ 𝑥 ≤ 𝑏} can be represented efficiently as an
interval [𝑎, 𝑏], even allowing for 𝑎 or 𝑏 to be ±∞. The domain of integer intervals

IZ def
=

{
[𝑎, 𝑏]

�� 𝑎, 𝑏 ∈ Z ∪ {−∞,∞} and 𝑎 ≤ 𝑏
}

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 16 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Static Inference of Regular Grammars for Ad Hoc Parsers 1:17

forms a pseudo-semi-lattice ⟨IZ, ⊑,⊤,⊔,⊓⟩ with a bounded meet but no ⊥ element:

[𝑎, 𝑏] ⊑ [𝑐, 𝑑] ⇐⇒ 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑

⊤ = [−∞,∞]
[𝑎, 𝑏] ⊔ [𝑐, 𝑑] = [min(𝑎, 𝑐),max(𝑏, 𝑑)]
[𝑎, 𝑏] ⊓ [𝑐, 𝑑] = [max(𝑎, 𝑐),min(𝑏, 𝑑)]

We can also define some standard operations and convenient relations between intervals:2

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] [𝑎, 𝑏] precedes [𝑐, 𝑑] ⇐⇒ 𝑏 < (𝑐 − 1)
[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐] [𝑎, 𝑏] is before [𝑐, 𝑑] ⇐⇒ 𝑏 < 𝑐

[𝑎, 𝑏] contains [𝑐, 𝑑] ⇐⇒ 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏

[𝑎, 𝑏] overlaps [𝑐, 𝑑] ⇐⇒ 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 ∧ 𝑏 < 𝑑

While IZ can abstractly represent infinite contiguous sets, such as those defined by a single
inequality relation like {𝑥 ∈ Z | 𝑥 > 5}, it can not represent even finite non-contiguous sets like
{1, 5, 7} or inequalities like {𝑥 ∈ Z | 𝑥 ≠ 2}. Thus the connection between Z and IZ is only partial:

𝛼 : ℘(Z) ↩→ IZ 𝛾 : IZ→ ℘(Z)
𝛼
(
{𝑥 ∈ Z | 𝑎 ≤ 𝑥 ≤ 𝑏}

)
= [𝑎, 𝑏] 𝛾

(
[𝑎, 𝑏]

)
= {𝑥 ∈ Z | 𝑎 ≤ 𝑥 ≤ 𝑏}

To completely represent non-contiguous sets of integers, we can use ordered lists of non-
overlapping intervals; e.g., {1, 2, 3, 7, 8, . . . } can be represented as [1, 3 | 7,∞]. As long as the number
of gaps between intervals is bounded, ℘(Z) can be efficiently abstracted by the domain

Ẑ def
=

{
𝑥1𝑥2 · · · 𝑥𝑛

�� 𝑥𝑖 ∈ IZ and 𝑥𝑖 is before 𝑥𝑖+1 and 𝑖 ≤ 𝑛
}
,

which forms a complete complemented lattice ⟨Ẑ, ⊑,⊥,⊤,⊔,⊓,¬⟩, with ⊥ = ∅ and ⊤ = [−∞,∞]
and the operations defined below. We use Haskell list notation (𝑥 : 𝑥𝑠) to peel off (or add on) the
first interval 𝑥 in a list, with 𝑥𝑠 denoting the remaining intervals.

(𝑥 : 𝑥𝑠) ⊑ (𝑦 : 𝑦𝑠) ⇐⇒ (𝑥 ⊑IZ 𝑦 ∧ 𝑥𝑠 ⊑ (𝑦 : 𝑦𝑠)) ∨ (𝑦 is before 𝑥 ∧ (𝑥 : 𝑥𝑠) ⊑ 𝑦𝑠)

(𝑥 : 𝑥𝑠) ⊔ (𝑦 : 𝑦𝑠) =


𝑥 : (𝑥𝑠 ⊔ (𝑦 : 𝑦𝑠)) if 𝑥 precedes 𝑦
𝑦 : ((𝑥 : 𝑥𝑠) ⊔ 𝑦𝑠) if 𝑦 precedes 𝑥
((𝑥 ⊔IZ 𝑦) ⊔ 𝑥𝑠) ⊔ 𝑦𝑠 otherwise

(𝑥 : 𝑥𝑠) ⊓ (𝑦 : 𝑦𝑠) =



𝑥𝑠 ⊓ (𝑦 : 𝑦𝑠) if 𝑥 is before 𝑦
(𝑥 : 𝑥𝑠) ⊓ 𝑦𝑠 if 𝑦 is before 𝑥
(𝑥 ⊓IZ 𝑦) : ((𝑥 : 𝑥𝑠) ⊓ 𝑦𝑠) if 𝑥 contains 𝑦 or 𝑦 overlaps 𝑥
(𝑥 ⊓IZ 𝑦) : (𝑥𝑠 ⊓ (𝑦 : 𝑦𝑠)) if 𝑦 contains 𝑥 or 𝑥 overlaps 𝑦
(𝑥 ⊓IZ 𝑦) : (𝑥𝑠 ⊓ 𝑦𝑠) otherwise

¬[−∞, 𝑏1 | 𝑎2, 𝑏2 | . . . | 𝑎𝑛,∞] = [𝑏1 + 1, 𝑎2 − 1 | 𝑏2 + 1, 𝑎3 − 1 | . . . | 𝑏𝑛−1 + 1, 𝑎𝑛 − 1]
¬[−∞, 𝑏1 | 𝑎2, 𝑏2 | . . . | 𝑎𝑛, 𝑏𝑛] = [𝑏1 + 1, 𝑎2 − 1 | . . . | 𝑏𝑛−1 + 1, 𝑎𝑛 − 1 | 𝑏𝑛 + 1,∞]
¬[𝑎1, 𝑏1 | 𝑎2, 𝑏2 | . . . | 𝑎𝑛,∞] = [−∞, 𝑎1 − 1 | 𝑏1 + 1, 𝑎2 − 1 | . . . | 𝑏𝑛−1 + 1, 𝑎𝑛 − 1]
¬[𝑎1, 𝑏1 | 𝑎2, 𝑏2 | . . . | 𝑎𝑛, 𝑏𝑛] = [−∞, 𝑎1 − 1 | 𝑏1 + 1, 𝑎2 − 1 | . . . | 𝑏𝑛−1 + 1, 𝑎𝑛 − 1 | 𝑏𝑛 + 1,∞]

2These interval relations are reminiscent of the temporal interval algebra of Allen [1983]. Our definitions of “precedes” and
“overlaps” are identical to Allen’s, whereas “is before” corresponds to Allen’s “precedes or meets,” and our “contains” is
equivalent to Allen’s “contains or equals or is started by or is finished by.”

2024-10-28 12:21. Page 17 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Michael Schröder and Jürgen Cito

The standard arithmetic operations are lifted into Ẑ via pointwise mapping of the equivalent
operations on IZ. We assume a standard semantics for abstract integer expressions, allowing us to
reduce and rewrite arithmetic expressions into a canonical form, e.g., [3, 5] + 1 { [4, 6].
We can construct the abstraction function 𝛼 : ℘(Z) → Ẑ for any finite subset of integers

𝑋 ∈ ℘(Z) by first sorting all elements of 𝑋 in ascending order and then identifying all non-
overlapping intervals of consecutive integers. This strategy does not work if 𝑋 is infinite, and in
any case is rather inefficient. Likewise, the concretization function 𝛾 : Ẑ→ ℘(Z), defined as

𝛾
(
𝑥1𝑥2 · · · 𝑥𝑛

)
=
⋃
𝑖≤𝑛

𝛾IZ (𝑥𝑖),

is not very practical. Fortunately, for our use case we only need to abstract and concretize sets of
integers defined via relational predicates, which is easily tractable, even with infinite bounds. The
corresponding semantic functions are defined below.

J𝑥 = 𝑎K↑𝑥 � [𝑎, 𝑎] J𝑥 ≥ 𝑎K↑𝑥 � [𝑎,∞] J𝑥 ≤ 𝑎K↑𝑥 � [−∞, 𝑎]
J𝑥 ≠ 𝑎K↑𝑥 � [−∞, 𝑎 − 1 | 𝑎 + 1,∞] J𝑥 > 𝑎K↑𝑥 � [𝑎 + 1,∞] J𝑥 < 𝑎K↑𝑥 � [−∞, 𝑎 − 1]

5.4 Characters
Abstract characters, i.e., sets of possible characters, are a common component of string grammars—
whitespace, for example, is usually defined as a set of certain invisible characters. While the size
of any string alphabet is always bounded and thus the maximum number of possibilities for a
single character is finite, these bounds can be quite large—the Unicode standard currently defines
149 878 characters [Unicode Consortium 2023]. Additionally, it is often desirable to define elements
of a string by what characters are not allowed to be there. Thus the need for an efficient abstract
representation of large sets of (im)possible characters.
Formally, we can define the domain of abstract characters Ĉ via the alphabet subset lattice
⟨℘(Σ), ⊆⟩, with the usual operations and elements ⟨Ĉ, ⊑,⊥,⊤,⊔,⊓,¬⟩ (cf. abstract Booleans B̂).
We use the familiar notation Σ interchangeably with ⊤, indicating the set of all characters of the
alphabet. We use set difference to indicate exclusion, e.g., Σ\{a, b} means the set of all characters
excluding ‘a’ and ‘b’. For singleton sets like {a} we will usually drop the braces and just write a.
Note that ⊥ = ∅ is not equivalent to the empty string; rather, it is the empty set of characters,
representing a space that is impossible to fill or a character that is impossible to produce. The
abstract semantics of Ĉ are defined by

𝛼 = 𝛾 = id, J𝑥 = 𝑐K↑𝑥� {𝑐}, J𝑥 ≠ 𝑐K↑𝑥� Σ\{𝑐}.

5.5 Strings
To abstractly represent infinite sets of strings, we define a domain Ŝ of regular expressions over
abstract characters Ĉ, consisting of the empty language ∅, the empty string 𝜀, abstract character
literals 𝑐 ∈ Ĉ such that 𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} ≡ 𝑐1 + 𝑐2 + · · · + 𝑐𝑛 , concatenation □ · □ (usually elided),
alternation □ + □, the Kleene star □∗, and optionals □? ≡ 𝜀 + □. We additionally allow the common
abbreviations □+ = □□∗ and □𝑛 = □□ · · ·□ where □ is repeated 𝑛 times, with 𝑛 < 1 resulting in ∅
and □0 = 𝜀.

The domain Ŝ forms a complete complemented lattice ⟨Ŝ, ⊑,⊥,⊤,⊔,⊓,¬⟩with⊥ = ∅,⊤ = Σ∗, and
the standard operations on regular sets [Hopcroft and Ullman 1979]. The language 𝐿(𝑠) describes
all strings generated/recognized by a regular expression 𝑠 ∈ Ŝ, thus 𝛾 (𝑠) = 𝐿(𝑠). We can of course
only abstract sets of strings that form a regular language, i.e., 𝛼 (𝑆) = 𝑠 ⇐⇒ 𝑆 = 𝐿(𝑠). While
𝛼 is not generally realizable [Gold 1967], we can define an abstract semantics over string relations,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 18 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Static Inference of Regular Grammars for Ad Hoc Parsers 1:19

r
|𝑠 | ∈ 𝑛̂

zx𝑠 � Σ𝑛̂ □𝑛̂ = ⊔[𝑎,𝑏]∈𝑛̂□[𝑎,𝑏]
r
|𝑠 | ∉ 𝑛̂

zx𝑠 � Σ¬𝑛̂ □[𝑎,𝑏] =

{
□𝑎□∗ if 𝑏 = ∞
□𝑎 + □𝑎+1 + · · · + □𝑏 otherwise

r
𝑠 [𝑖] ∈ 𝑐

zx𝑠 � Σ𝑖𝑐Σ∗
r
𝑠 [𝑖] ∉ 𝑐

zx𝑠 � Σ[0,𝑖] + Σ𝑖 (¬𝑐)Σ∗
r
𝑠 [𝑖] ∈ ∅

zx𝑠 � Σ[0,𝑖]
r
𝑠 [𝑖] ∉ ∅

zx𝑠 � Σ𝑖+1Σ∗
r
𝑠 [𝚤] ≬ 𝑐

zx𝑠 � Σ𝚤𝑐Σ∗
r
𝑠 [𝚤] ∥ 𝑐

zx𝑠 � l

[𝑎,𝑏]∈𝚤

{
Σ[0,𝑎] + Σ𝑎 (¬𝑐)+ if 𝑏 = ∞
Σ[0,𝑎] + Σ𝑎 (¬𝑐)𝑏−𝑎+1Σ∗ otherwise

r
𝑠 [𝚤] ≬ ∅

zx𝑠 � Σmin(𝚤)
r
𝑠 [𝚤] ∥ ∅

zx𝑠 � Σmax(𝚤)Σ∗ if max(𝚤) ≠ ∞

r
𝑠
[
|𝑠 | − 𝑖

]
∈ ∅

zx𝑠 � ∅ r
𝑠
[
|𝑠 | − 𝑖

]
∉ ∅

zx𝑠 � Σ∗

r
𝑠
[
|𝑠 | − 𝑖

]
∈ 𝑐

zx𝑠 � Σ∗𝑐Σ𝑖−1
r
𝑠
[
|𝑠 | − 𝑖

]
∉ 𝑐

zx𝑠 � Σ∗ (¬𝑐)Σ𝑖−1 + Σ[0,𝑖−1]
r
𝑠
[
|𝑠 | − 𝚤

]
≬ ∅

zx𝑠 � ∅ r
𝑠
[
|𝑠 | − 𝚤

]
∥ ∅

zx𝑠 � Σ∗

r
𝑠
[
|𝑠 | − 𝚤

]
≬ 𝑐

zx𝑠 � Σ∗𝑐Σ𝚤−1

r
𝑠
[
|𝑠 | − 𝚤

]
∥ 𝑐

zx𝑠 � l

[𝑎,𝑏]∈𝚤


(¬𝑐)∗Σ𝑎−1 + Σ[0,𝑎−1] if 𝑏 = ∞
r
𝑠
[
|𝑠 | − [𝑎, 𝑏 − 1]

]
∥ 𝑐

zx𝑠 Σ + 𝜀 otherwise

r
𝑠 [𝑖 .. 𝑗] ∈ ∅

zx𝑠 � Σ[0,𝑖]
r
𝑠 [𝑖 .. 𝑗] ∉ ∅

zx𝑠 � Σ 𝑗+1Σ∗

r
𝑠 [𝑖 .. 𝑗] ∈ 𝑡

zx𝑠 � Σ𝑖 (Σ 𝑗−𝑖+1 ⊓ 𝑡)Σ∗
r
𝑠 [𝑖 .. 𝑗] ∉ 𝑡

zx𝑠 � Σ[0,𝑖] + Σ𝑖 (Σ 𝑗−𝑖+1 \ 𝑡)Σ∗
r
𝑠 [𝚤.. 𝚥] ≬ 𝑡

zx𝑠 � Σ𝚤 (Σ𝚥−𝚤+1 ⊓ 𝑡)Σ∗
r
𝑠 [𝑖 .. 𝑗] ∥ 𝑡

zx𝑠 � ¬r𝑠 [𝑖 .. 𝑗] ≬ 𝑡zx𝑠
Fig. 9. Abstract relational semantics for strings. Abstract values are denoted □̂. We assume single characters

have been lifted to singleton character sets, e.g., 𝑠 [𝑖] = 𝑐 { 𝑠 [𝑖] ∈ 𝑐 where 𝑐 = {𝑐}.

shown in Figure 9, that allows us to abstract all strings expressed via relations between common
string operations.

6 Implementation and Evaluation
We have implemented our approach in the Panini prototype system, available at https://anonymous.
4open.science/r/panini. It includes a basic Python frontend with a small default set of 𝜆Σ axioms
mimicking the semantics of common Python string functions. Our implementation is written in
Haskell and uses the Z3 theorem solver [De Moura and Bjørner 2008] and is modular with respect to

2024-10-28 12:21. Page 19 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://anonymous.4open.science/r/panini
https://anonymous.4open.science/r/panini

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Michael Schröder and Jürgen Cito

Table 3. Evaluation Results

Successful Failed
Type Parser Example Total Exact Under Empty Stuck Time (s)

Straight getAddrSpec [^<>]*<[^>]*>.* 89 81 0 0 8 0.08 ±0.25
+ Cond. Figure 3 a|[^a]b.* 50 43 0 1 6 0.01 ±0.01
+ Loops lsb_check 0*1 63 31 5 8 19 2.12 ±6.12

202 155 5 9 33 0.70 ±3.54

the abstract domains used during grammar inference. Panini can be used as a library, a standalone
batch-mode command-line application, or interactively via a read-eval-print loop.

6.1 Efficient Regular Expressions
An important aspect for the practical viability of our approach is an efficient implementation of
the underlying abstract domains, in particular abstract strings Ŝ and abstract characters Ĉ. The
machine representation of Ĉ is based on complemented PATRICIA tries [Kmett 2012; Morrison 1968;
Okasaki and Gill 1998], which enable compact representation of negated sets while allowing all
common set operations. For Ŝ, we implemented an efficient regular expression type whose literals
are abstract characters from Ĉ and whose operations, like regular intersection and complement,
are performed purely algebraically, without going through finite automata. Our approach uses
Brzozowski derivatives [Antimirov 1996; Brzozowski 1964] and is based on the equation-solving
technique by Acay [2018], using Arden’s lemma [Arden 1961] and Gaussian elimination to solve
a system of regular equations. It is similar to the approach by Liang et al. [2015], but makes use
of the local mintermization trick employed by Keil and Thiemann [2014] to effectively compute
precise derivative over large alphabets. To keep regular expressions as concise and human-readable
as possible, we aggressively simplify intermediate expressions using the transformation rules and
heuristics described by Kahrs and Runciman [2022].

6.2 Experiments

def getAddrSpec(email):
b1 = email.index('<',0)+1
b2 = email.index('>',b1)
return email[b1:b2]

getAddrSpec : {email : S | ★} → S
getAddrSpec = 𝝀(email : S).

let 𝑣0 = indexFrom email “<” 0 in
let 𝑣1 = ge 𝑣0 0 in
let _ = assert 𝑣1 in
let 𝑏1 = add 𝑣0 1 in
let 𝑏2 = indexFrom email “>” 𝑏1 in
let 𝑣3 = ge 𝑏2 0 in
let _ = assert 𝑣3 in
slice email 𝑏1 𝑏2

Fig. 10. A straight-line ad hoc parser.

To provide insights into the efficacy and applicability
of the Panini prototype for inferring grammars from
ad hoc parser implementations, we curated a bench-
mark dataset comprising 202 regular ad hoc parsers
written in Python. The dataset was curated to be di-
verse across two dimensions, complexity of accepted
grammar and structure of parser code. We generated
the dataset by writing straightforward parsers for in-
creasingly complex combinations of regular language
operations and then added variations of each parser,
e.g., using high-level Python string functions such as
index, using loops to iterate over the characters in a
string, parsing the input from back-to-front, etc. We
also added domain-specific variations to illustrate real-
world applicability (e.g., Figures 10 and 11).
Methodology. For each ad hoc parser in the dataset,
we used Panini to transpile the original Python source
to 𝜆Σ and automatically infer a grammar from the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 20 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Static Inference of Regular Grammars for Ad Hoc Parsers 1:21

parser’s 𝜆Σ representation. We assessed the efficacy
and performance overheads of Panini in terms of both
the accuracy of inferred grammars and the computational resources required for the inference
process. The inferred grammars were compared against manually curated ground truth grammars
to assess the accuracy of Panini’s inference capabilities. We differentiate between exact matches
with the ground truth grammar; successful under-approximations, which correctly identify a subset
of allowed strings; trivial under-approximations, i.e., undesired inferences of the empty language
∅; and “stuck” inferences, where Panini is unable to proceed with inference due to insufficient
semantics or other limitations of the abstract domains. We discuss the underlying reasons for
under-approximations and failed inference cases in § 6.3. We also measured the computational
overhead incurred during the grammar inference process, particularly wall-clock execution time.
All benchmarks were run on a MacBook Air with an Apple M2 processor and 8 GB RAM, using
Z3 4.13.2 for SMT solving.

Our complete benchmark dataset, along with scripts for reproducibility, is made publicly available
as an artifact to ensure the transparency and replicability of our experimental findings. The
reproducibility package includes the source code of ad hoc parsers, ground truth grammars, and
instructions for using Panini for grammar inference.

def lsb_check(s):
i = 0
while i < len(s)-1:
assert s[i] == '0'
i += 1

assert s[i] == '1'

lsb_check : {𝑠 : S | ★} → 1
lsb_check = 𝝀(𝑠 : S).

rec 𝐿2 : {𝑖 : Z | ★} → 1 = 𝝀𝑖 .
let 𝑣0 = length 𝑠 in
let 𝑣1 = sub 𝑣0 1 in
let 𝑣2 = lt 𝑖 𝑣1 in
if 𝑣2 then

let 𝑣3 = slice1 𝑠 𝑖 in
let 𝑣4 = match 𝑣3 “0” in
let _ = assert 𝑣4 in
let 𝑖 = add 𝑖 1 in
𝐿2 𝑖

else

let 𝑣5 = slice1 𝑠 𝑖 in
let 𝑣6 = match 𝑣5 “1” in
let _ = assert 𝑣6 in
unit

in

𝐿2 0

Fig. 11. An ad hoc parser with loops.

Results. To facilitate a structured analysis, we classi-
fied the parsers within our benchmark dataset into three
overarching categories based on their structural features:
Straight-line Programs are ad hoc parsers characterized
by linear execution flow without branching constructs
such as conditionals or loops. Figure 10 shows an exam-
ple of such a program, used to parse the angle-bracketed
addr-spec part of an email address with a display name.
Programs with Conditionals are ad hoc parsers that incor-
porate conditional statements to make decisions based
on input characteristics. We saw such a program in the
example of Figure 3. Programs with Loops and Conditionals
are ad hoc parsers containing iterative constructs along-
side conditional statements for string manipulation tasks.
Figure 11 presents a parser looping over a bit-string to
ensure that only the least-significant bit is set.
Table 3 presents a comprehensive overview of our ex-

perimental results, showcasing an illustrative example
representative of each ad hoc parser category, together
with summary statistics on the accuracy and performance
of Panini’s grammar inference. Out of the 202 parser pro-
grams in our dataset, we achieve exact inference for 81 out
of 89 straight-line programs (91 %), 43 out of 50 purely con-
ditional programs (86 %), and 31 out of 63 programs con-
taining loops (49 %). We infer safe under-approximations
of the grammars for 5 loop programs, fail to find a mean-
ingful refinement beyond the empty language for 1 condi-
tional and 8 loop programs, and get stuck without results
on 8 straight-line, 6 conditional, and 19 loop programs
(16 % of all parsers in the dataset). Our main obstacle for

2024-10-28 12:21. Page 21 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Michael Schröder and Jürgen Cito

complete inference of all loop programs are insufficient
invariants; we discuss this further in § 6.3.
The performance of grammar inference is in the sub-second range on average. Most of the

inference time is spent during classical refinement inference, where SMT solving is the biggest
bottleneck. However, our implementation is not optimized in this area and we conjecture there are
a lot of low-hanging fruits that could significantly improve performance by large constant factors.

6.3 Current Limitations and Future Work
Our Panini prototype is a proof-of-concept that shows the viability of our approach; it is not yet a
practical end-user system. We see four main areas of improvement as part of future work:

def f102(s):
i = 0
while i < len(s):
assert s[i] == "a"
i += 1

assert i == 2

Fig. 12. A parser for aa

def f250(s):
i = 0
while i < len(s):
assert s[i] == "a"
assert s[i+2] == "b"
i += 2

Fig. 13. A parser for (ab)*

def f521(s):
assert s[0] == "a"
assert s[1] == s[0]

Fig. 14. A parser for aa.*

Invariant Inference. In our approach, the solving of non-
grammar 𝜅 variables is delegated to the classical refinement
inference machinery (§ 3.3). In particular, this includes the
generation of loop/recursion invariants, which our prototype
infers using a textbook implementation of purely conjunctive
predicate abstraction, a technique that is inherently limited in
the shape of invariants that can be produced and is highly de-
pendent on a good set of candidate predicates. In many cases,
predicate abstraction is quite sufficient, as in the example of
Figure 11, where the invariant 0 ≤ 𝑖 ≤ |𝑠 | of the recursive
function 𝐿2 can be easily inferred. But even simple-seeming
code variations can stump the system, as in the parser of Fig-
ure 12, where a final assertion statement outside of the loop
body effectively constrains the loop to two iterations, inducing
the invariant 0 ≤ 𝑖 ≤ 2. Unfortunately, our prototype cannot
infer this invariant automatically, resulting in a grammar in-
ference of ∅ (if the invariant is provided as an annotation, the
correct grammar is produced). To remedy this situation, we
plan to improve our qualifier extraction heuristics and inte-
grate external state-of-the-art invariant generators. We are
also investigating whether we can generalize our own abstract
interpretation machinery to potentially directly solve certain
numeric invariants, in addition to grammar variables.
Abstract Domains. The abstract interpretation we perform
is bounded by the limits of the underlying abstract domains
(§ 5). For example, our integer domain Ẑ cannot efficiently
represent congruence classes, e.g., infinite sets of even or odd
numbers. This can lead to under-approximations for certain parsers, like the one in Figure 13, for
which Panini can only infer the subset (ab)? of the true grammar (ab)*. By design, our system is
modular in the choice of underlying abstract domains, and we are working on extending them.
Relational Semantics. If Panini lacks the semantics to rewrite, normalize, or abstract a particular
relation (see § 4.3), it will eventually become stuck. We can increase the capabilities of the system
by extending the set of semantic rules—i.e., adding more equations to Figure 9. But take the parser
in Figure 14, which leads to Panini trying to compute the abstraction J𝑠 [0] = 𝑠 [1]K↑𝑠 . In isolation,
this constraint is not even expressible in a regular string domain—even though the final grammar is
regular. To handle such tricky cases, a more complex non-local rewriting strategy might be needed,
one that takes into account more of the surrounding context.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 22 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Static Inference of Regular Grammars for Ad Hoc Parsers 1:23

Table 4. Comparison of state-of-the-art grammar inference approaches.

Requirements
Approach Samples Parser Interaction Output

Panini - source - Regex
STALAGMITE - source traced symbolic execution CFG
Mimid positive source traced execution CFG
TreeVada positive oracle membership query CFG
TTT (positive) oracle membership + equivalence query DFA
Exbar pos. + neg. - - DFA

Language Features. The 𝜆Σ language is by design minimal, in order to provide a common
intermediate representation for a wide range of ad hoc parser implementations and to simplify
many aspects of refinement and grammar inference. However, its lack of language features makes
it difficult to easily capture many real-world parser programs, such as those involving generic data
types. We are currently working on extending the 𝜆Σ language to add support for polymorphism and
user-defined data types and are investigating how such features interact with abstract interpretation
and our grammar solving approach.

6.4 Comparison with Other Approaches
Table 4 compares the operating requirements of Panini and other grammar inference systems:
whether or not they need pre-existing input samples, and of what kind; whether the parser needs
to be available in source form to be inspected or modified, or as a black-box oracle, or not at all; and
what form of interaction with the parser is necessary, if any. The systems and algorithms selected
for comparison represent the state-of-the-art in grammar inference:
Exbar [Lang 1999] is the fastest known algorithm for finding minimal DFAs from labeled

samples only. This type of grammar inference—known as passive automata learning—is notable
in that it does not require the existence of a parser program at all, neither to run nor inspect.
Other prominent algorithms in this category include RPNI [Oncina and García 1992] and the
approximative ED-BEAM [Lang 1999]. Unfortunately, the requirement of a well-labeled set of
representative input samples is unrealistic in many settings, including ours.
TTT [Isberner 2015; Isberner et al. 2014] is a leading algorithm in active automata learning,

specifically within the minimally adequate teacher (MAT) framework. Established by Angluin
[1987] with the introduction of the seminal 𝐿∗ algorithm, MAT formulates grammar learning as
an interactive process, in which a teacher—an oracle or black-box parser program—can answer
two types of question: whether a certain input is a member of the target language, and whether a
hypothesized language is equivalent to the target language, providing a counterexample if it is not.
In practice, the requirement of equivalence queries is quite onerous, which is why they are usually
approximated by conformance testing [Aichernig et al. 2024], using a set of known positive input
samples. Other than for realizing equivalence queries, pre-existing input samples are technically
not required by MAT algorithms, as they can start off by simply enumerating the input alphabet;
however, good input samples can speed up the learning process.
TreeVada [Arefin et al. 2024] is the state-of-the-art in black-box inference of context-free

grammars. Other approaches in this vein are Arvada [Kulkarni et al. 2021] and the pioneering
Glade [Bastani et al. 2017]. These systems do not require equivalence queries, which makes them
much more practical than traditional MAT algorithms, but they do all require a well-covering set
of positive input samples in order to produce accurate grammars [Bendrissou et al. 2022].

2024-10-28 12:21. Page 23 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Michael Schröder and Jürgen Cito

Mimid [Gopinath et al. 2020] generalizes positive sample inputs into a context-free grammar by
analyzing execution traces of an instrumented version of the parser, which needs to be available
in source form. Mimid significantly improves on the previous white-box approach AUTOGRAM
[Höschele and Zeller 2017], but it still requires a good set of pre-existing input samples to produce
an accurate grammar. A general advantage of white-box approaches is that the inferred grammars
tend to be very readable, because they can incorporate identifiers from the source code.

STALAGMITE [Bettscheider and Zeller 2024] is a recent white-box approach that obviates the
need for input samples by transforming the source program into a version amenable for symbolic
execution. In addition to inserting tracing calls, this includes limiting recursion depth and the
number of loop iterations, which enables a symbolic test generator like KLEE [Cadar et al. 2008a]
to automatically generate input samples that cover all execution paths. After running the modified
parser on a large enough number of samples, the collected symbolic input traces are woven together
to produce a context-free grammar.
Note that Panini is the only approach that requires neither positive input samples nor any

interaction with the parser. It is therefore uniquely suited to deal with ad hoc parsers, for which
input samples are generally not available and which occur as code fragments that cannot always be
expected to run as-is. In its current form, Panini is limited to inference of at-most regular languages,
but we conjecture that these make up the highest share of ad hoc parsers in the wild [Schröder et al.
2023]. We argue that all other existing approaches have requirements that make them impractical
to use in this setting.

6.5 Case Study: cgidecode.py
We demonstrate Panini’s suitability for ad hoc grammar inference using the cgidecode.py subject
of the Mimid benchmark suite. This is a Python program to decode CGI-encoded strings. If an
improperly encoded string is encountered, the program raises an error. The regular expression
([^%]|%[0-9A-Fa-f][0-9A-Fa-f])* encompasses the input language of this ad hoc parser.

Table 5. cgidecode.py benchmark

P R Time (s)

Panini 1.00 1.00 1.81
Mimid 1.00 <0.27 48.10
TreeVada 0.96 <0.18 661.28

We compare Panini againstMimid and TreeVada and
reuse the Mimid benchmark setup: to evaluate precision,
the inferred grammar is used to generate 1000 inputs to
fuzz the original program, noting how many of those
inputs were accepted; to evaluate recall, a human-written
golden grammar is used to generate 1000 inputs to test
against the inferred grammar. The results of our compar-
ison (averaged over ten runs) are presented in Table 5.

Panini is able to infer the true input language of cgidecode.py exactly, in 1.81 seconds, without
requiring any prior knowledge of positive inputs.

Mimid can infer a subset of the input language for cgidecode.py, in 48.10 seconds, using 17 hand-
selected known-positive input samples as additional information. Although Gopinath et al. [2020]
report 100% precision and recall for Mimid on this benchmark, this is based on an insufficient
golden grammar, which does not include all possible two-digit hexadecimals and is limited to a
subset of the ASCII alphabet, perhaps because the grammar representation used by Mimid cannot
easily represent the entire Unicode alphabet [Zeller et al. 2024]. We reran their benchmark on an
extended golden grammar, closer to the actual grammar but still limited to only printable ASCII
characters, which revealed that the true recall of Mimid’s inferred grammar was at most 27 %.

TreeVada, using the same set of positive input samples provided by the Mimid benchmark for
the training set, takes about 11 minutes to infer a slightly incorrect grammar, with a precision of
96 % and recall of at most 18 % (measured against the extended Mimid golden grammar).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 24 of 1–30.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Static Inference of Regular Grammars for Ad Hoc Parsers 1:25

This comparison highlights that previous approaches, perhaps because they prioritize larger-
scale inference of context-free grammars, can be too coarse for precise inference of regular ad hoc
grammars and are highly dependent on good input samples to cover the state space of the parsing
program. The necessity to execute the parsers during inference also naturally increases the inference
times of these dynamic approaches.

7 Related Work

String Constraint Solving. Precise formal reasoning over strings can be accomplished using string
constraint solving (SCS), a declarative paradigm of modeling relations between string variables and
solving attendant combinatorial problems [Amadini 2021]. It is usually assumed that collecting
string constraints requires some kind of (dynamic) symbolic execution [Kausler and Sherman 2014],
and practical SCS applications are generally concerned with the inverse of our problem: modeling
the possible strings a function can return or express [Bultan et al. 2018], instead of the strings a
function can accept. In our approach, we use purely static means (viz. refinement type inference)
to essentially collect input string constraints (see § 3), which we then simplify/solve in ways not
dissimilar but nonetheless different from traditional SCS techniques (see § 4). There have been
many recent advances in SCS for SMT [Abdulla et al. 2015; Kan et al. 2022; Kiezun et al. 2009; Trinh
et al. 2014, 2020; Zheng et al. 2013]. We particularly make use of string theories embedded in the
Z3 constraint solver [Berzish et al. 2017] in our implementation (§ 6).

Related work in (dynamic) symbolic execution make use of constraint solvers over string domains
at their core to reason about how strings are manipulated in programs, with applications ranging
from generating test inputs [Bjørner et al. 2009; Cadar et al. 2008b; Li et al. 2011] and detecting
vulnerabilities (e.g., cross-site scripting, SQL injection) [Holík et al. 2017; Loring et al. 2017; Saxena
et al. 2010]. These approaches differ from our work on two specific aspects. First, they rely on
traces from dynamic executions to infer more precise constraints, while we are able to reason about
string constraints statically. Second, in the case of detecting vulnerabilities, they reason about the
resulting output induced through string operations, and do not infer a grammar over the input
language, which is our main goal.

Abstract Domains. Abstract string domains approximate strings to track information precisely
enough to analyze particular behaviors of interest while only preserving relevant information.
Most of the existing work in string domains differs in what kind of behavior is of interest and how
the approximation is achieved efficiently.

Costantini et al. [2015] introduces a suite of different abstract semantics for concatenation, charac-
ter inclusion, and substring extraction (particularly pre- and suffixes). In their work, they explicitly
discuss the trade-off between precision and efficiency. Amadini et al. [2020] review the dashed
string abstraction, an approach that considers strings as blocks of characters and the constraints
on these blocks, which has shown good performance on benchmarks involving constraints on
string length, equality, concatenation, and regular expression membership. M-String [Cortesi and
Olliaro 2018] considers a parametric abstract domain for strings in the C programming language
by leveraging abstract domains for the content of a string and for expressions to infer when a
string index position corresponds to an expression of interest. While most of the existing work has
focused on approximating a single variable, very recent work by Arceri et al. [2022] focuses on
relational string domains that try to capture the relation between string variables and expressions
for which we cannot compute static values, such as user input.
There have been a multitude of abstract domains that aim at specific target languages, such as

JavaScript [Amadini et al. 2017; Jensen et al. 2009; Kashyap et al. 2014; Park et al. 2016].

2024-10-28 12:21. Page 25 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Michael Schröder and Jürgen Cito

Precondition Inference. Despite awide variety of approaches for computing preconditions [Barnett
and Leino 2005; Cousot et al. 2013; Dillig et al. 2013; Padhi et al. 2016; Seghir and Kroening 2013],
we are not aware of any that focus specifically on string operations, or that would allow us to
reconstruct an input grammar in a way suitable for our envisioned applications.

Data-Availability Statement
We have implemented our approach in the Panini prototype system, whose source repository will
become publicly available upon acceptance and is currently viewable for reviewers in anonymized
form at https://anonymous.4open.science/r/panini. This repository also includes our full evaluation
dataset. We will additionally provide a self-contained artifact (most likely in the form of a Docker
container) to easily reproduce all claims made in this paper.

References
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.

2015. Norn: An SMT solver for string constraints. In Computer Aided Verification: 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Springer, 462–469.

Josh Acay. 2018. A Regular Expression Library for Haskell. (2018). https://github.com/cacay/regexp Unpublished manuscript,
dated May 22, 2018. LaTeX files and Haskell source code.

Bernhard K. Aichernig, Martin Tappler, and Felix Wallner. 2024. Benchmarking Combinations of Learning and Testing
Algorithms for Automata Learning. Form. Asp. Comput. 36, 1, Article 3 (mar 2024), 37 pages. https://doi.org/10.1145/
3605360

James F. Allen. 1983. Maintaining Knowledge about Temporal Intervals. Commun. ACM 26, 11 (nov 1983), 832–843.
https://doi.org/10.1145/182.358434

Roberto Amadini. 2021. A Survey on String Constraint Solving. arXiv:2002.02376 [cs.AI]
Roberto Amadini, Graeme Gange, and Peter J. Stuckey. 2020. Dashed strings for string constraint solving. Artificial

Intelligence 289 (2020), 103368. https://doi.org/10.1016/j.artint.2020.103368
Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter Schachte, Harald SØndergaard, Peter J. Stuckey,

and Chenyi Zhang. 2017. Combining String Abstract Domains for JavaScript Analysis: An Evaluation. In Proceedings,
Part I, of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume
10205. Springer-Verlag, Berlin, Heidelberg, 41–57. https://doi.org/10.1007/978-3-662-54577-5_3

Dana Angluin. 1987. Learning regular sets from queries and counterexamples. Information and Computation 75, 2 (1987),
87–106. https://doi.org/10.1016/0890-5401(87)90052-6

Valentin Antimirov. 1996. Partial derivatives of regular expressions and finite automaton constructions. Theoretical Computer
Science 155, 2 (March 1996), 291–319. https://doi.org/10.1016/0304-3975(95)00182-4

Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Pietro Ferrara. 2022. Relational String Abstract Domains. In
Verification, Model Checking, and Abstract Interpretation: 23rd International Conference, VMCAI 2022, Philadelphia, PA,
USA, January 16–18, 2022, Proceedings (Philadelphia, PA, USA). Springer-Verlag, Berlin, Heidelberg, 20–42. https:
//doi.org/10.1007/978-3-030-94583-1_2

Dean N. Arden. 1961. Delayed-logic and finite-state machines. In 2nd Annual Symposium on Switching Circuit Theory and
Logical Design (SWCT 1961). 133–151. https://doi.org/10.1109/FOCS.1961.13

Mohammad Rifat Arefin, Suraj Shetiya, Zili Wang, and Christoph Csallner. 2024. Fast Deterministic Black-box Context-free
Grammar Inference. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon,
Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 117, 12 pages. https://doi.org/
10.1145/3597503.3639214

Mike Barnett and K. Rustan M. Leino. 2005. Weakest-Precondition of Unstructured Programs. In Proceedings of the 6th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (Lisbon, Portugal) (PASTE ’05).
ACM, New York, NY, USA, 82–87. https://doi.org/10.1145/1108792.1108813

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo Theories Library (SMT-LIB). http://smt-
lib.org

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2021. Satisfiability Modulo Theories. In Handbook of
Satisfiability (2nd ed.). IOS Press, Chapter 33, 1267–1329.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 95–110. https://doi.org/10.1145/3062341.3062349

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 26 of 1–30.

https://anonymous.4open.science/r/panini
https://github.com/cacay/regexp
https://doi.org/10.1145/3605360
https://doi.org/10.1145/3605360
https://doi.org/10.1145/182.358434
https://arxiv.org/abs/2002.02376
https://doi.org/10.1016/j.artint.2020.103368
https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1109/FOCS.1961.13
https://doi.org/10.1145/3597503.3639214
https://doi.org/10.1145/3597503.3639214
https://doi.org/10.1145/1108792.1108813
http://smt-lib.org
http://smt-lib.org
https://doi.org/10.1145/3062341.3062349

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Static Inference of Regular Grammars for Ad Hoc Parsers 1:27

Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller. 2022. “Synthesizing input grammars”: a replication study. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 260–268. https:
//doi.org/10.1145/3519939.3523716

Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A string solver with theory-aware heuristics. In 2017
Formal Methods in Computer Aided Design (Vienna, Austria) (FMCAD 2017). IEEE, 55–59. https://doi.org/10.23919/
FMCAD.2017.8102241

Leon Bettscheider and Andreas Zeller. 2024. Look Ma, No Input Samples! Mining Input Grammars from Code with Symbolic
Parsing. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering
(Porto de Galinhas, Brazil) (FSE 2024). 522–526. https://doi.org/10.1145/3663529.3663790

Saroja Bhate and Subhash Kak. 1991. Pān. ini’s Grammar and Computer Science. Annals of the Bhandarkar Oriental Research
Institute 72/73, 1/4 (1991), 79–94.

Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. 2015. Horn Clause Solvers for Program Verification.
In Fields of Logic and Computation II: Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. Springer,
24–51.

Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating programs.
In Tools and Algorithms for the Construction and Analysis of Systems: 15th International Conference, TACAS 2009, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings 15. Springer, 307–321.

William J. Bowman. 2022. The A Means A. https://www.williamjbowman.com/blog/2022/06/30/the-a-means-a/
Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon, and Andreas Zwinkau. 2013. Simple

and Efficient Construction of Static Single Assignment Form. In Proceedings of the 22nd International Conference on
Compiler Construction (Rome, Italy) (CC’13). Springer-Verlag, Berlin, Heidelberg, 102–122. https://doi.org/10.1007/978-3-
642-37051-9_6

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/
321239.321249

Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. 2018. String Analysis for Software Verification and Security
(1st ed.). Springer Cham. https://doi.org/10.1007/978-3-319-68670-7

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008a. KLEE: unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA, 209–224.

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. 2008b. EXE: Automatically generating
inputs of death. ACM Transactions on Information and System Security (TISSEC) 12, 2 (2008), 1–38.

Manuel MT Chakravarty, Gabriele Keller, and Patryk Zadarnowski. 2004. A functional perspective on SSA optimisation
algorithms. Electronic Notes in Theoretical Computer Science 82, 2 (2004), 347–361. https://doi.org/10.1016/S1571-
0661(05)82596-4

N. Chomsky and M.P. Schützenberger. 1963. The Algebraic Theory of Context-Free Languages. In Computer Programming
and Formal Systems, P. Braffort and D. Hirschberg (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 35.
Elsevier, 118–161. https://doi.org/10.1016/S0049-237X(08)72023-8

Agostino Cortesi and Martina Olliaro. 2018. M-String Segmentation: A Refined Abstract Domain for String Analysis
in C Programs. In 2018 International Symposium on Theoretical Aspects of Software Engineering (TASE). 1–8. https:
//doi.org/10.1109/TASE.2018.00009

Benjamin Cosman and Ranjit Jhala. 2017. Local Refinement Typing. PACM on Programming Languages 1, ICFP, Article 26
(Aug. 2017), 27 pages. https://doi.org/10.1145/3110270

Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. 2015. A Suite of Abstract Domains for Static Analysis of String
Values. Softw. Pract. Exper. 45, 2 (feb 2015), 245–287. https://doi.org/10.1002/spe.2218

Patrick Cousot. 1997. Types as Abstract Interpretations. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Paris, France) (POPL ’97). Association for Computing Machinery, New York, NY,
USA, 316–331. https://doi.org/10.1145/263699.263744

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas) (POPL ’79). Association
for Computing Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/567752.567778

2024-10-28 12:21. Page 27 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1145/3663529.3663790
https://www.williamjbowman.com/blog/2022/06/30/the-a-means-a/
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1016/S1571-0661(05)82596-4
https://doi.org/10.1016/S1571-0661(05)82596-4
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1109/TASE.2018.00009
https://doi.org/10.1109/TASE.2018.00009
https://doi.org/10.1145/3110270
https://doi.org/10.1002/spe.2218
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Michael Schröder and Jürgen Cito

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary Precon-
ditions. In Proceedings of the 14th International Conference on Verification, Model Checking, and Abstract Interpretation
(Rome, Italy) (VMCAI 2013). Springer-Verlag, Berlin, Heidelberg, 128–148. https://doi.org/10.1007/978-3-642-35873-9_10

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program. In
Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’78 (POPL ’78).
ACM Press. https://doi.org/10.1145/512760.512770

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, NewMexico) (POPL ’82). Association
for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-
3_24

Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Inductive Invariant Generation via Abductive Inference. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &
Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 443–456. https://doi.org/10.1145/
2509136.2509511

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. Comput. Surveys 54, 5, Article 98 (May 2021), 38 pages.
https://doi.org/10.1145/3450952

Aryaz Eghbali and Michael Pradel. 2020. No strings attached: An empirical study of string-related software bugs. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 956–967.

M Fitter and TRG Green. 1979. When do diagrams make good computer languages? International Journal of man-machine
studies 11, 2 (1979), 235–261.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.
In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation (Albuquerque,
New Mexico, USA) (PLDI ’93). ACM, New York, NY, USA, 237–247. https://doi.org/10.1145/155090.155113

Roberto Giacobazzi and Elisa Quintarelli. 2001. Incompleteness, Counterexamples, and Refinements in Abstract Model-
Checking. In Proceedings of the 8th International Symposium on Static Analysis (SAS ’01). Springer-Verlag, Berlin, Heidel-
berg, 356–373.

David J. Gilmore and Thomas R. G. Green. 1984. Comprehension and recall of miniature programs. International Journal of
Man-Machine Studies 21, 1 (1984), 31–48.

E Mark Gold. 1967. Language identification in the limit. Information and control 10, 5 (1967), 447–474.
Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars from Dynamic Control Flow. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). ACM, New York, NY, USA, 172–183. https://doi.org/10.1145/3368089.
3409679

R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (December
1969), 29–60.

Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. 2017. String Constraints with Concatenation
and Transducers Solved Efficiently. Proc. ACM Program. Lang. 2, POPL, Article 4 (dec 2017), 32 pages. https://doi.org/10.
1145/3158092

John Hopcroft and Jeffrey Ullman. 1979. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.
Matthias Höschele and Andreas Zeller. 2017. Mining Input Grammars with AUTOGRAM. In 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C). 31–34. https://doi.org/10.1109/ICSE-C.2017.14
Malte Isberner. 2015. Foundations of Active Automate Learning: An Algorithmic Perspective. Ph. D. Dissertation. TU Dortmund.
Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT Algorithm: A Redundancy-Free Approach to Active

Automata Learning. In Runtime Verification, Borzoo Bonakdarpour and Scott A. Smolka (Eds.). Springer International
Publishing, Cham, 307–322.

Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis for javascript.. In SAS, Vol. 9. Springer,
238–255.

Ranjit Jhala and Niki Vazou. 2020. Refinement Types: A Tutorial. (2020). arXiv:2010.07763 [cs.PL]
Stephen C Johnson and Ravi Sethi. 1990. Yacc: A Parser Generator. UNIX Vol. II: Research System (1990), 347–374.
Stefan Kahrs and Colin Runciman. 2022. Simplifying regular expressions further. Journal of Symbolic Computation 109

(March 2022), 124–143. https://doi.org/10.1016/j.jsc.2021.08.003
Shuanglong Kan, Anthony Widjaja Lin, Philipp Rümmer, and Micha Schrader. 2022. Certistr: a certified string solver. In

Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs. 210–224.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 28 of 1–30.

https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/582153.582176
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/3450952
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3158092
https://doi.org/10.1145/3158092
https://doi.org/10.1109/ICSE-C.2017.14
https://arxiv.org/abs/2010.07763
https://doi.org/10.1016/j.jsc.2021.08.003

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Static Inference of Regular Grammars for Ad Hoc Parsers 1:29

Charaka Geethal Kapugama, Van-Thuan Pham, Aldeida Aleti, and Marcel Böhme. 2022. Human-in-the-loop oracle learning
for semantic bugs in string processing programs. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. 215–226.

Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben
Hardekopf. 2014. JSAI: A static analysis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering. 121–132.

Scott Kausler and Elena Sherman. 2014. Evaluation of String Constraint Solvers in the Context of Symbolic Execution. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (Vasteras, Sweden) (ASE
’14). ACM, New York, NY, USA, 259–270. https://doi.org/10.1145/2642937.2643003

Matthias Keil and Peter Thiemann. 2014. Symbolic Solving of Extended Regular Expression Inequalities. (2014).
arXiv:1410.3227 [cs.FL]

Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst. 2009. HAMPI: a solver for string
constraints. In Proceedings of the eighteenth international symposium on Software testing and analysis. 105–116.

Edward Kmett. 2012. charset: Fast unicode character sets based on complemented PATRICIA tries. https://hackage.haskell.
org/package/charset

Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly Recursive Input Grammars. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 456–467. https://doi.org/10.1109/ASE51524.2021.
9678879

Kevin J Lang. 1999. Faster algorithms for finding minimal consistent DFAs. Technical Report. NEC Research Institute, 4
Independence Way, Princeton, NJ.

Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser Combinators for the Real World. Technical Report
UU-CS-2001-35. Department of Information and Computing Sciences, Utrecht University. http://www.cs.uu.nl/research/
techreps/repo/CS-2001/2001-35.pdf

Guodong Li, Indradeep Ghosh, and Sreeranga P Rajan. 2011. KLOVER: A symbolic execution and automatic test generation
tool for C++ programs. In Computer Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings 23. Springer, 609–615.

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. 2015. A Decision Procedure for
Regular Membership and Length Constraints over Unbounded Strings. Springer International Publishing, 135–150. https:
//doi.org/10.1007/978-3-319-24246-0_9

Francesco Logozzo and Manuel Fähndrich. 2010. Pentagons: A weakly relational abstract domain for the efficient validation
of array accesses. Science of Computer Programming 75, 9 (Sept. 2010), 796–807. https://doi.org/10.1016/j.scico.2009.04.004

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical symbolic execution of standalone JavaScript.
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software. 196–199.

David MacQueen, Robert Harper, and John Reppy. 2020. The History of Standard ML. PACM on Programming Languages 4,
HOPL, Article 86 (June 2020), 100 pages. https://doi.org/10.1145/3386336

Falcon Momot, Sergey Bratus, Sven M Hallberg, and Meredith L Patterson. 2016. The seven turrets of babel: A taxonomy of
langsec errors and how to expunge them. In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 45–52.

Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura. 2020. Extending Liquid Types to Arrays. ACM
Transactions on Computational Logic 21, 2, Article 13 (Jan. 2020), 41 pages. https://doi.org/10.1145/3362740

Donald R. Morrison. 1968. PATRICIA — Practical Algorithm To Retrieve Information Coded in Alphanumeric. J. ACM 15, 4
(oct 1968), 514–534. https://doi.org/10.1145/321479.321481

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford University. A revised
version was published in June 1981 by Xerox PARC as report number CSL-81-10.

Chris Okasaki and Andy Gill. 1998. Fast mergeable integer maps. In ACM SIGPLAN Workshop on ML. 77–86.
José Oncina and Pedro García. 1992. Inferring Regular Languages in Polynomial Updated Time. World Scientific, 49–61.

https://doi.org/10.1142/9789812797902_0004
Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004. Dynamic Typing with Dependent Types. In

Exploring New Frontiers of Theoretical Informatics, Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell (Eds.). 437–450.
https://doi.org/10.1007/1-4020-8141-3_34

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition Inference with Learned Features. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,
CA, USA) (PLDI ’16). ACM, New York, NY, USA, 42–56. https://doi.org/10.1145/2908080.2908099

Changhee Park, Hyeonseung Im, and Sukyoung Ryu. 2016. Precise and scalable static analysis of jQuery using a regular
expression domain. In Proceedings of the 12th Symposium on Dynamic Languages. 25–36.

Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-𝐿𝐿 (𝑘) parser generator. Software: Practice and Experience
25, 7 (1995), 789–810. https://doi.org/10.1002/spe.4380250705

2024-10-28 12:21. Page 29 of 1–30.Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2642937.2643003
https://arxiv.org/abs/1410.3227
https://hackage.haskell.org/package/charset
https://hackage.haskell.org/package/charset
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1109/ASE51524.2021.9678879
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1145/3386336
https://doi.org/10.1145/3362740
https://doi.org/10.1145/321479.321481
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1002/spe.4380250705

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Michael Schröder and Jürgen Cito

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY, USA, 159–169.
https://doi.org/10.1145/1375581.1375602

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, StephenMcCamant, and Dawn Song. 2010. A symbolic execution
framework for javascript. In 2010 IEEE Symposium on Security and Privacy. IEEE, 513–528.

Michael Schröder, Marc Goritschnig, and Jürgen Cito. 2023. An Exploratory Study of Ad Hoc Parsers in Python.
arXiv:2304.09733 [cs.SE] https://arxiv.org/abs/2304.09733 Accepted as a registered report for MSR 2023 with Con-
tinuity Acceptance (CA).

Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-Guided Precondition Inference. In Proceedings of
the 22nd European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13). Springer-Verlag, Berlin,
Heidelberg, 451–471. https://doi.org/10.1007/978-3-642-37036-6_25

Axel Simon, Andy King, and Jacob M. Howe. 2003. Two Variables per Linear Inequality as an Abstract Domain. Springer
Berlin Heidelberg, 71–89. https://doi.org/10.1007/3-540-45013-0_7

Ken Thompson. 1968. Programming techniques: Regular expression search algorithm. Commun. ACM 11, 6 (1968), 419–422.
Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A symbolic string solver for vulnerability detection in web

applications. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 1232–1243.
Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2020. Inter-theory dependency analysis for SMT string solvers. Proceedings

of the ACM on Programming Languages 4, OOPSLA (2020), 1–27.
The Unicode Consortium. 2023. The Unicode Standard, Version 15.1.0. The Unicode Consortium, South San Francisco, CA.

https://www.unicode.org/versions/Unicode15.1.0/
Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden)
(ICFP ’14). ACM, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

Alessandro Warth and Ian Piumarta. 2007. OMeta: An Object-Oriented Language for Pattern Matching. In Proceedings of the
2007 Symposium on Dynamic Languages (Montreal, Quebec, Canada) (DLS ’07). 11–19.

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. 2024. Fuzzing with Grammars. In The
Fuzzing Book. CISPA Helmholtz Center for Information Security. https://www.fuzzingbook.org/html/Grammars.html
Retrieved 2024-06-30 18:31:28+02:00.

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A z3-based string solver for web application analysis. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. 114–124.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.2024-10-28 12:21. Page 30 of 1–30.

https://doi.org/10.1145/1375581.1375602
https://arxiv.org/abs/2304.09733
https://arxiv.org/abs/2304.09733
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1007/3-540-45013-0_7
https://www.unicode.org/versions/Unicode15.1.0/
https://doi.org/10.1145/2628136.2628161
https://www.fuzzingbook.org/html/Grammars.html

	Abstract
	1 Introduction
	2 Overview
	2.1 The Front End: From Source to
	2.2 The Back End: From to Grammar

	3 Refinement Inference
	3.1 Syntax
	3.2 Type System
	3.3 Variable Solving

	4 Grammar Inference
	4.1 Abstract Interpretation
	4.2 Extended Constraint Syntax
	4.3 Relational Semantics
	4.4 Quantifier Elimination

	5 Abstract Domains
	5.1 Unit
	5.2 Booleans
	5.3 Integers
	5.4 Characters
	5.5 Strings

	6 Implementation and Evaluation
	6.1 Efficient Regular Expressions
	6.2 Experiments
	6.3 Current Limitations and Future Work
	6.4 Comparison with Other Approaches
	6.5 Case Study: cgidecode.py

	7 Related Work
	References

