
Grammar Inference for Ad Hoc Parsers
Michael Schröder

TU Wien
Vienna, Austria

michael.schroeder@tuwien.ac.at

Abstract

Any time we use common string functions like split, trim,
or slice, we effectively perform parsing. Yet no one ever
bothers to write down grammars for such ad hoc parsers. We
propose a grammar inference system that allows program-
mers to get input grammars from unannotated source code
łfor free,ž enabling a range of new possibilities, from inter-
active documentation to grammar-aware semantic change
tracking. To this end, we introduce Panini, an intermedi-
ate representation with a novel refinement type system that
incorporates domain knowledge of ad hoc parsing.

CCS Concepts: · Theory of computation→ Grammars

and context-free languages; Program analysis.

Keywords: grammars, ad hoc parsers, refinement types

ACM Reference Format:

Michael Schröder. 2022. Grammar Inference for Ad Hoc Parsers.

In Companion Proceedings of the 2022 ACM SIGPLAN International

Conference on Systems, Programming, Languages, and Applications:

Software for Humanity (SPLASH Companion ’22), December 5ś10,

2022, Auckland, New Zealand. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3563768.3565550

1 Motivation

Ad hoc parsers are pieces of code that use common string
functions like split, trim, or slice to effectively perform
parsing: łthe process of structuring a linear representation
in accordance with a given grammarž [29]. But they do so
without employing any formal parsing techniques, such as
combinator frameworks [38] or parser generators [35, 49];
the łgiven grammarž remains entirely implicit.
The Python expression in Figure 1 is a typical example

of an ad hoc parser. It turns a string of comma-separated
numbers into a list of integers. Code like this can be found in
functions handling command-line arguments, reading config-
uration files, or as part of any number of minor programming
tasks involving strings. Commonly, this kind of parsing code

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9901-2/22/12.

https://doi.org/10.1145/3563768.3565550

xs = map(int, s.split(","))

s → int ∣ int , s

int → space* (+ ∣ -)? digit (_? digit)* space*

digit → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

space → ⎵ ∣ \t ∣ \n ∣ \v ∣ \f ∣ \r

Inferred Grammar Inferred Inputs

(empty)

1,2,3

10_000,4

+01_2,␣␣3␣

Figure 1. An ad hoc parser and its inferred grammar.

is deeply entangled with application logic, a phenomenon
known as shotgun parsing [45].
Figure 1 also demonstrates our vision of grammar infer-

ence. In the same way that type inference allows program-
mers to generally omit type annotations because they can
be automatically recovered from the surrounding context,
grammar inference lets programmers recover the implicit
input grammars of their ad hoc parsers. A parser without
an explicit grammar is very much like a function without a
type signatureÐit might still work, but you will not have any
guarantees about it before actually running the program.

The grammar in Figure 1 immediately reveals a great deal
about a deceptively simple looking expression, e.g., that the
empty string is not a valid input (it will in fact crash the
program) or that single _ characters can be used for grouping
digits. Grammars are finite but complete formal descriptions
of all values an input string can have without the program
going wrong. They help assure us that our input languages
have favorable properties and our parsers do not contain
otherwise hidden features or bugs. The language-theoretic
security community regards grammars as vital in assuring
the correctness and safety of input handling routines [54, 55].

We propose an end-to-end grammar inference system [56]
(Figure 2) that would allow programmers to get input gram-
mars from unannotated ad hoc parser source code łfor free.ž
This enables a range of exciting new possibilities:

● Interactive Documentation that is closely linked to the
underlying code and always up-to-date [39] (Figure 1).

● Bi-directional Parser Synthesis, combining grammar
inference with parser generation to enable grammar-based
program transformations [17], program sketching [40, 50,
58], and live bi-directional programming [15, 43].

● Grammar Mining & Learning, which allows us to de-
tect parser code clones [36, 61], enhance semantic code
search [26, 44, 51], and add grammar-awareness to seman-
tic change tracking [30, 52] (Figure 3).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

38

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1496-0531
https://doi.org/10.1145/3563768.3565550
https://doi.org/10.1145/3563768.3565550

SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand Michael Schröder

Ad Hoc Parser

Source Code

Intermediate

Representation

Language Model

GrammarVisualization

Simplification

Inference

Synthesis

Source Function

Specifications

Figure 2. End-to-end grammar inference.

2 Problem

Given the source code of a parser, we want to find a grammar
describing the language that the parser recognizes. Note
that this is different from the related problem of finding
a grammar given a set of sentences that can be produced
by that grammar, which is known as grammar induction or
grammatical inference [20, 21, 31].
Obtaining input grammars of programs has been heav-

ily pursued by the fuzzing community [42, 62] for use in
grammar-based fuzzing [4, 32]. Black-box approaches try to
infer a language model by poking the program with seed
inputs and monitoring its runtime behavior [8, 27]. This
has some theoretical limits [2, 3] and the amount of nec-
essary poking (i.e., membership queries) grows exponen-
tially with the size of the grammar. White-box approaches
use techniques like taint tracking to monitor data flow be-
tween variables [33] or observing character accesses of input
strings [28]. These approaches can produce fairly accurate
and human-readable grammars, at least in test settings, but
they rely on dynamic execution and thus require complete
runnable programs. They also do not provide any guarantees
about the accuracy of the inferred grammars.

Precise formal reasoning over strings can be accomplished
using string constraint solving (SCS), a declarative paradigm
of modeling relations between string variables and solving
attendant combinatorial problems [1]. However, collecting
string constraints again usually requires (dynamic) symbolic
execution [37], and practical SCS applications are generally
concerned with the inverse of our problem: modeling the
possible strings a function can return or express [13], instead
of the strings a function can accept.

We view grammar inference as a special case of precondi-
tion inference. But despite a wide variety of approaches for
computing preconditions [5, 18, 23, 48, 57], we are not aware
of any that focus specifically on string operations, or that
would allow us to reconstruct an input grammar.

3 Approach

3.1 The Panini Language

Our approach is centered around Panini,1 an intermediate
representation of ad hoc parser code. It is a small 𝜆-calculus

1Named after the ancient Indian grammarian Pān. ini [10], as well as the

delicious Italian sandwiches.

🤖
⚠ Merging #420 (6a36b23) into main (224b18b)
will change the input grammar of a function.

18 18 def baz(s):

19 - i = 0

 19 + i = 1

20 20 while s[i] == "a"

21 21 i += 1

22 22 assert s[i] == "b"

Before:

baz → a*bΣ*

After:

baz → Σa*bΣ*

Figure 3. Grammar-aware semantic change tracking: a code
review bot informs the programmer that a recent commit
has introduced a change in input grammar.

in A-normal form (ANF) [25] that is solely intended for type
synthesis. Panini programs are neither meant to be executed
nor written by hand. Ad hoc parser source code, written in a
general-purpose programming language like Python, is first
transformed into static single assignment (SSA) form [11]
and then into a Panini program via an SSA-to-ANF transfor-
mation [14].
Panini has a refinement type system in the Liquid Types

tradition [53, 59]. Base types like int or string are deco-
rated with predicates in a logic decidable using satisfiability

modulo theories (SMT) [7], specifically quantifier-free lin-
ear arithmetic with uninterpreted functions (QF_UFLIA) [6]
extended with a theory of operations over strings [9]. For
example, {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0} is the type of natural numbers
and (𝑠 ∶ string) → {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0 ∧ 𝜈 ≙ ⋃︀𝑠 ⋃︀} is a dependent
function type whose outputs can refer to input types. Type
synthesis generates verification conditions (VCs) [47], which
are constraints in the refinement logic whose validity implies
that the synthesized types are a correct specification of the
program. VCs can be discharged by most off-the-shelf SMT
solvers; we currently use Z3 [22].

We based Panini on the Sprite tutorial language by Jhala
and Vazou [34], and incorporated ideas from various other
systems [16, 24, 46]. Notably, we use the Fusion algorithm
by Cosman and Jhala [16] to enable inference of the most
precise local refinement type for all program statements,
without requiring any prior type annotations except for li-
brary functions. Another advantage of the Fusion approach
is the preservation of scoping structure, yielding VCs that
more closely match the original program structurally.

VCs might initially contain 𝜅 variables denoting unknown
refinements. These arise naturally as part of type synthesis,
e.g., to allow information to flow between intermediate terms,
but can also be added explicitly as refinement holes. Before
discharging a VC, all of its 𝜅 variables need to be replaced by
concrete refinement predicates. It is generally desirable to
find the strongest satisfying assignments for all 𝜅 variables
given the overall constraints.

39

Grammar Inference for Ad Hoc Parsers SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand

𝝀𝑠 . ∀𝑠 . 𝜅0(𝑠) ⇒

let 𝑥 ≙ charAt 𝑠 0 in 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 ≙ 𝑠⋃︁0⨄︁⇒ 𝑠⋃︁0⨄︁ ≙ 𝑥
let 𝑝1 ≙ match 𝑥 "a" in ∀𝑝1. 𝑝1⇔ 𝑥 ≙ "a"⇒ (𝑝1 ∧ 𝑠⋃︁0⨄︁ ≙ "a") ∨ (¬𝑝1 ∧ 𝑠⋃︁0⨄︁ ≠ "a")

if 𝑝1 then (𝑝1 ⇒ 𝑠⋃︁0⨄︁ ≙ "a"
let 𝑛 ≙ length 𝑠 in ∀𝑛. 𝑛 ≥ 0 ∧𝑛 ≙ ⋃︀𝑠 ⋃︀⇒ 𝑠⋃︁0⨄︁ ≙ "a" ∧ ⋃︀𝑠 ⋃︀ ≙ 𝑛
let 𝑝2 ≙ equals 𝑛 1 in ∀𝑝2. 𝑝2⇔ 𝑛 ≙ 1⇒ (𝑝2 ∧ 𝑠 ≙ "a") ∨ . . .

assert 𝑝2 𝑝2) 𝑠 ≙ "a"

else ∧ (¬𝑝1 ⇒ 𝑠⋃︁0⨄︁ ≠ "a"
let 𝑦 ≙ charAt 𝑠 1 in 1 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑦. 𝑦 ≙ 𝑠⋃︁1⨄︁⇒ 𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ 𝑦
let 𝑝3 ≙ match 𝑦 "b" in ∀𝑝3. 𝑝3⇔ 𝑦 ≙ "b"⇒ 𝑠⋃︁0⨄︁ ≠ "a" ∧ ((𝑝3 ∧ 𝑠⋃︁1⨄︁ ≙ "b") ∨ . . .)
assert 𝑝3 𝑝3) 𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b"

(𝑠 ≙ "a") ∨ (𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b")

Figure 4. A Panini program (left), its verification condition (middle), and a derivation of 𝜅0 (right).

3.2 Grammar Inference

To infer a parser’s input grammar, we need to find the most
precise solution for the 𝜅 variable representing the refine-
ment of the parser’s input string argument. Consider the
following simple parser:

if s[0] == "a":

assert len(s) == 1

else:

assert s[1] == "b"

Figure 4 shows the equivalent Panini program, alongside
the VC for the top-level function typeÐnotice how it closely
mirrors the program’s structure. On the right, we show how
to derive a precise assignment for 𝜅0, the unknown refine-
ment over the input string 𝑠 . Our key insight is that humans
tend to write small parsers in a top-down, recursive descent,
𝐿𝐿(1) style. We can exploit this common structure and walk
the VC’s top-level consequent to build 𝜅0 piece by piece,
using domain knowledge of string operations to minimize
predicates until we satisfy the VC.

We begin with the constraint 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 ≙ 𝑠⋃︁0⨄︁⇒ . . . ,
which tells us that 𝑠 is a string of at least one character
and that we can identify this character by the variable 𝑥 .
The string might have more characters, but we know that it
definitely has at least this one. So we can make a preliminary
assignment 𝜅0 ≅ 𝑠⋃︁0⨄︁ ≙ 𝑥 .
Next, the constraint ∀𝑝1. 𝑝1⇔ 𝑥 ≙ "a"⇒ . . . makes us

branch into two possible worlds: one where the predicate
is true and one where its opposite is true. Accordingly, we
update our preliminary assignment

𝜅0 ≅ (𝑝1 ∧ 𝑠⋃︁0⨄︁ ≙ "a") ∨ (¬𝑝1 ∧ 𝑠⋃︁0⨄︁ ≠ "a").

As we continue on to subsequent constraints, we may be
able to further refine and expand each of these branches, or
to eliminate some of them altogether if they can never be
satisfiable.

After we have descended into all quantifiers and implica-
tions, resolved all names, and simplified all equations, we
arrive at the final assignment

𝜅0(𝑠) ≐ (𝑠 ≙ "a") ∨ (𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b"),

which can be equivalently written in grammar form as

𝑠 → a ⋃︀ (Σ/a)bΣ∗.

4 Methodology

Our primary hypothesis is that we can infer accurate gram-
mars for ad hoc parsers using a framework of syntax-driven
refinement type synthesis that incorporates domain-specific
knowledge of parsing. We intend to prove the soundness of
our approach and to demarcate its limits. More practically,
we will provide an implementation of the Panini language.

Our ultimate goal is an end-to-end grammar inference
system (Figure 2). This necessitates solving a number of ad-
ditional technical problems surrounding the inference step:
extracting the relevant parts of the initial source code, e.g.,
using a form of program slicing [60]; ensuring source func-
tion specifications are correct (ideally in a mechanized way);
preserving precise source location information to allow trace-
ability of grammar productions; and transforming refine-
ment predicates into representations that facilitate grammar
comparisons [41] and can be shown in familiar form, e.g.,
ABNF [19] or railroad diagrams [12] (we found a graph rep-
resentation with bounded edge constraints to be promising).
We intend to ensure the effectiveness of our system by

evaluating it on a corpus of curated ad hoc parser samples
from the real world. Additionally, we plan on building pro-
totypes of at least some of our proposed applications (ğ 1) to
demonstrate practical viability. We also intend on conduct-
ing a large-scale mining study of inferred grammars, and are
currently conducting a user study on grammar comprehen-
sion to determine the benefits and drawbacks of different
textual and visual grammar representations.

40

SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand Michael Schröder

References
[1] Roberto Amadini. 2021. A Survey on String Constraint Solving.

arXiv:2002.02376 [cs.AI]

[2] Dana Angluin. 1987. Queries and Concept Learning. Machine Learning

2, 4 (1987), 319ś342. https://doi.org/10.1007/BF00116828

[3] D. Angluin andM. Kharitonov. 1995. WhenWon’tMembership Queries

Help? J. Comput. System Sci. 50, 2 (April 1995), 336ś355. https:

//doi.org/10.1006/jcss.1995.1026

[4] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick

Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS:

Fishing for Deep Bugs with Grammars. In 26th Annual Network and

Distributed System Security Symposium (San Diego, California, USA)

(NDSS 2019). https://doi.org/10.14722/ndss.2019.23412

[5] Mike Barnett and K. Rustan M. Leino. 2005. Weakest-Precondition

of Unstructured Programs. In Proceedings of the 6th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and En-

gineering (Lisbon, Portugal) (PASTE ’05). ACM, New York, NY, USA,

82ś87. https://doi.org/10.1145/1108792.1108813

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfia-

bility Modulo Theories Library (SMT-LIB). http://smt-lib.org

[7] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

2021. Satisfiability Modulo Theories. In Handbook of Satisfiability (2nd

ed.). IOS Press, Chapter 33, 1267ś1329.

[8] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Syn-

thesizing Program Input Grammars. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA,

95ś110. https://doi.org/10.1145/3062341.3062349

[9] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A

string solver with theory-aware heuristics. In 2017 Formal Methods in

Computer Aided Design (Vienna, Austria) (FMCAD 2017). IEEE, 55ś59.

https://doi.org/10.23919/FMCAD.2017.8102241

[10] Saroja Bhate and Subhash Kak. 1991. Pān. ini’s Grammar and Computer

Science. Annals of the Bhandarkar Oriental Research Institute 72/73,

1/4 (1991), 79ś94.

[11] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa,

Christoph Mallon, and Andreas Zwinkau. 2013. Simple and Efficient

Construction of Static Single Assignment Form. In Proceedings of the

22nd International Conference on Compiler Construction (Rome, Italy)

(CC’13). Springer-Verlag, Berlin, Heidelberg, 102ś122. https://doi.org/

10.1007/978-3-642-37051-9_6

[12] Lisa M Braz. 1990. Visual syntax diagrams for programming language

statements. ACM SIGDOC Asterisk Journal of Computer Documentation

14, 4 (1990), 23ś27. https://doi.org/10.1145/97435.97987

[13] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. 2018.

String Analysis for Software Verification and Security (1st ed.). Springer

Cham. https://doi.org/10.1007/978-3-319-68670-7

[14] Manuel MT Chakravarty, Gabriele Keller, and Patryk Zadarnowski.

2004. A functional perspective on SSA optimisation algorithms. Elec-

tronic Notes in Theoretical Computer Science 82, 2 (2004), 347ś361.

https://doi.org/10.1016/S1571-0661(05)82596-4

[15] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016.

Programmatic and Direct Manipulation, Together at Last. In Proceed-

ings of the 37th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). ACM,

New York, NY, USA, 341ś354. https://doi.org/10.1145/2908080.2908103

[16] Benjamin Cosman and Ranjit Jhala. 2017. Local Refinement Typing.

PACM on Programming Languages 1, ICFP, Article 26 (Aug. 2017),

27 pages. https://doi.org/10.1145/3110270

[17] Patrick Cousot and Radhia Cousot. 2002. Systematic Design of Program

Transformation Frameworks by Abstract Interpretation. In Proceed-

ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Portland, Oregon) (POPL ’02). ACM, New

York, NY, USA, 178ś190. https://doi.org/10.1145/503272.503290

[18] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco

Logozzo. 2013. Automatic Inference of Necessary Preconditions. In

Proceedings of the 14th International Conference on Verification, Model

Checking, and Abstract Interpretation (Rome, Italy) (VMCAI 2013).

Springer-Verlag, Berlin, Heidelberg, 128ś148. https://doi.org/10.1007/

978-3-642-35873-9_10

[19] D. Crocker and P. Overell. 2008. Augmented BNF for Syntax Specifi-

cations: ABNF. STD 68. RFC Editor. http://www.rfc-editor.org/rfc/

rfc5234.txt

[20] Colin de la Higuera. 2005. A bibliographical study of grammatical

inference. Pattern Recognition 38, 9 (2005), 1332ś1348. https://doi.org/

10.1016/j.patcog.2005.01.003

[21] Colin de la Higuera. 2010. Grammatical Inference: Learning Automata

and Grammars. Cambridge University Press. https://doi.org/10.1017/

CBO9781139194655

[22] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th In-

ternational Conference on Tools and Algorithms for the Construction

and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).

Springer-Verlag, Berlin, Heidelberg, 337ś340. https://doi.org/10.1007/

978-3-540-78800-3_24

[23] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. In-

ductive Invariant Generation via Abductive Inference. In Proceed-

ings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications (Indianapo-

lis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 443ś456.

https://doi.org/10.1145/2509136.2509511

[24] Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing.

Comput. Surveys 54, 5, Article 98 (May 2021), 38 pages. https://doi.

org/10.1145/3450952

[25] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.

1993. The Essence of Compiling with Continuations. In Proceedings of

the ACM SIGPLAN 1993 Conference on Programming Language Design

and Implementation (Albuquerque, NewMexico, USA) (PLDI ’93). ACM,

New York, NY, USA, 237ś247. https://doi.org/10.1145/155090.155113

[26] Isabel García-Contreras, José F. Morales, and Manuel V. Hermenegildo.

2016. Semantic code browsing. Theory and Practice of Logic

Programming 16, 5-6 (2016), 721ś737. https://doi.org/10.1017/

S1471068416000417

[27] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz:

Machine Learning for Input Fuzzing. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineer-

ing (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, 50ś59.

https://doi.org/10.1109/ASE.2017.8115618

[28] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining

Input Grammars from Dynamic Control Flow. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Virtual

Event, USA) (ESEC/FSE 2020). ACM, New York, NY, USA, 172ś183.

https://doi.org/10.1145/3368089.3409679

[29] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing Techniques (2nd ed.).

Springer, New York, NY. https://doi.org/10.1007/978-0-387-68954-8

[30] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding Code

Change Understandingwith Semantic Change Impact Analysis. In 2019

IEEE International Conference on Software Maintenance and Evolution

(ICSME 2019). 202ś212. https://doi.org/10.1109/ICSME.2019.00031

[31] JeffreyHeinz and JosM. Sempere. 2016. Topics in Grammatical Inference

(1st ed.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-

662-48395-4

[32] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with

Code Fragments. In Proceedings of the 21st USENIX Conference on

Security Symposium (Bellevue, WA) (Security’12). USENIX Association,

USA, 38.

41

https://arxiv.org/abs/2002.02376
https://doi.org/10.1007/BF00116828
https://doi.org/10.1006/jcss.1995.1026
https://doi.org/10.1006/jcss.1995.1026
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.1145/1108792.1108813
http://smt-lib.org
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1145/97435.97987
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1016/S1571-0661(05)82596-4
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/3110270
https://doi.org/10.1145/503272.503290
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10
http://www.rfc-editor.org/rfc/rfc5234.txt
http://www.rfc-editor.org/rfc/rfc5234.txt
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1145/155090.155113
https://doi.org/10.1017/S1471068416000417
https://doi.org/10.1017/S1471068416000417
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1109/ICSME.2019.00031
https://doi.org/10.1007/978-3-662-48395-4
https://doi.org/10.1007/978-3-662-48395-4

Grammar Inference for Ad Hoc Parsers SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand

[33] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars

fromDynamic Taints. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering (Singapore, Singapore)

(ASE 2016). ACM, New York, NY, USA, 720ś725. https://doi.org/10.

1145/2970276.2970321

[34] Ranjit Jhala and Niki Vazou. 2020. Refinement Types: A Tutorial. (2020).

arXiv:2010.07763 [cs.PL]

[35] Stephen C Johnson and Ravi Sethi. 1990. Yacc: A Parser Generator.

UNIX Vol. II: Research System (1990), 347ś374.

[36] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan

Wagner. 2009. Do code clones matter?. In Proceedings of the 31st

International Conference on Software Engineering (Vancouver, Canada)

(ICSE ’09). 485ś495. https://doi.org/10.1109/ICSE.2009.5070547

[37] Scott Kausler and Elena Sherman. 2014. Evaluation of String Constraint

Solvers in the Context of Symbolic Execution. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering

(Vasteras, Sweden) (ASE ’14). ACM, New York, NY, USA, 259ś270.

https://doi.org/10.1145/2642937.2643003

[38] Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser

Combinators for the Real World. Technical Report UU-CS-2001-35. De-

partment of Information and Computing Sciences, Utrecht University.

http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf

[39] T.C. Lethbridge, J. Singer, and A. Forward. 2003. How Software Engi-

neers Use Documentation: The State of the Practice. IEEE Software 20,

6 (2003), 35ś39. https://doi.org/10.1109/MS.2003.1241364

[40] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program

Sketching with Live Bidirectional Evaluation. PACM on Programming

Languages 4, ICFP, Article 109 (Aug. 2020), 29 pages. https://doi.org/

10.1145/3408991

[41] Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor

Kuncak. 2015. Automating Grammar Comparison. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (Pittsburgh, PA,

USA) (OOPSLA 2015). ACM, New York, NY, USA, 183ś200. https:

//doi.org/10.1145/2814270.2814304

[42] Valentin J. M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil

Cha, Manuel Egele, Edward J. Schwartz, and Maverick Woo.

2019. The Art, Science, and Engineering of Fuzzing: A Survey.

arXiv:1812.00140 [cs.CR]

[43] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional

Evaluation with Direct Manipulation. PACM on Programming Lan-

guages 2, OOPSLA, Article 127 (Oct. 2018), 28 pages. https://doi.org/

10.1145/3276497

[44] Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-Based

Semantic Code Search over Partial Programs. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems

Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12).

ACM, New York, NY, USA, 997ś1016. https://doi.org/10.1145/2384616.

2384689

[45] Falcon Darkstar Momot, Sergey Bratus, Sven M Hallberg, and Mered-

ith L Patterson. 2016. The Seven Turrets of Babel: A Taxonomy of

LangSec Errors and How to Expunge Them. In 2016 IEEE Cybersecurity

Development (SecDev) (Boston, MA). 45ś52. https://doi.org/10.1109/

SecDev.2016.019

[46] Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura.

2020. Extending Liquid Types to Arrays. ACM Transactions on

Computational Logic 21, 2, Article 13 (Jan. 2020), 41 pages. https:

//doi.org/10.1145/3362740

[47] Charles Gregory Nelson. 1980. Techniques for Program Verification.

Ph. D. Dissertation. Stanford University. A revised version was pub-

lished in June 1981 by Xerox PARC as report number CSL-81-10.

[48] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven

Precondition Inference with Learned Features. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI ’16). ACM, New York,

NY, USA, 42ś56. https://doi.org/10.1145/2908080.2908099

[49] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-

𝐿𝐿(𝑘) parser generator. Software: Practice and Experience 25, 7 (1995),

789ś810. https://doi.org/10.1002/spe.4380250705

[50] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram Synthesis from Polymorphic Refinement Types. In Proceedings of

the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Santa Barbara, CA, USA) (PLDI ’16). ACM, New

York, NY, USA, 522ś538. https://doi.org/10.1145/2908080.2908093

[51] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020.

Semantic Code Search via Equational Reasoning. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and

Implementation (London, UK) (PLDI 2020). ACM, New York, NY, USA,

1066ś1082. https://doi.org/10.1145/3385412.3386001

[52] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. 2004.

Dex: a semantic-graph differencing tool for studying changes in large

code bases. In Proceedings of the 20th IEEE International Conference

on Software Maintenance (Chicago, IL, USA) (ICSM 2004). 188ś197.

https://doi.org/10.1109/ICSM.2004.1357803

[53] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid

Types. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (Tucson, AZ, USA)

(PLDI ’08). ACM, New York, NY, USA, 159ś169. https://doi.org/10.

1145/1375581.1375602

[54] Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E.

Locasto. 2013. Security Applications of Formal Language Theory. IEEE

Systems Journal 7, 3 (2013), 489ś500. https://doi.org/10.1109/JSYST.

2012.2222000

[55] Joern Schneeweisz. 2020. How to exploit parser differentials. Retrieved

July 16, 2021 from https://about.gitlab.com/blog/2020/03/30/how-to-

exploit-parser-differentials/

[56] Michael Schröder and Jürgen Cito. 2022. Grammars for Free: To-

ward Grammar Inference for Ad Hoc Parsers. In 2022 IEEE/ACM

44th International Conference on Software Engineering: New Ideas and

Emerging Results (ICSE-NIER) (Pittsburgh, PA, USA). 41ś45. https:

//doi.org/10.48550/arXiv.2202.01021

[57] Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-

Guided Precondition Inference. In Proceedings of the 22nd European

Conference on Programming Languages and Systems (Rome, Italy)

(ESOP’13). Springer-Verlag, Berlin, Heidelberg, 451ś471. https://doi.

org/10.1007/978-3-642-37036-6_25

[58] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph. D.

Dissertation. UC Berkeley.

[59] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2014. Refinement Types for Haskell. In Proceedings of the

19th ACM SIGPLAN International Conference on Functional Program-

ming (Gothenburg, Sweden) (ICFP ’14). ACM, New York, NY, USA,

269ś282. https://doi.org/10.1145/2628136.2628161

[60] Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software

Engineering SE-10, 4 (July 1984), 352ś357. https://doi.org/10.1109/TSE.

1984.5010248

[61] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang.

2019. Neural Detection of Semantic Code Clones via Tree-Based

Convolution. In Proceedings of the 27th International Conference on

Program Comprehension (Montreal, Quebec, Canada) (ICPC ’19). IEEE

Press, 70ś80. https://doi.org/10.1109/ICPC.2019.00021

[62] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and

Christian Holler. 2021. The Fuzzing Book. CISPA Helmholtz Center

for Information Security. https://www.fuzzingbook.org/

42

https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1145/2970276.2970321
https://arxiv.org/abs/2010.07763
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1145/2642937.2643003
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1145/2814270.2814304
https://arxiv.org/abs/1812.00140
https://doi.org/10.1145/3276497
https://doi.org/10.1145/3276497
https://doi.org/10.1145/2384616.2384689
https://doi.org/10.1145/2384616.2384689
https://doi.org/10.1109/SecDev.2016.019
https://doi.org/10.1109/SecDev.2016.019
https://doi.org/10.1145/3362740
https://doi.org/10.1145/3362740
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3385412.3386001
https://doi.org/10.1109/ICSM.2004.1357803
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1109/JSYST.2012.2222000
https://doi.org/10.1109/JSYST.2012.2222000
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://doi.org/10.48550/arXiv.2202.01021
https://doi.org/10.48550/arXiv.2202.01021
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/ICPC.2019.00021
https://www.fuzzingbook.org/

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	3.1 The Panini Language
	3.2 Grammar Inference

	4 Methodology
	References

