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Abstract

Any time we use common string functions like split, trim,
or slice, we effectively perform parsing. Yet no one ever
bothers to write down grammars for such ad hoc parsers. We
propose a grammar inference system that allows program-
mers to get input grammars from unannotated source code
łfor free,ž enabling a range of new possibilities, from inter-
active documentation to grammar-aware semantic change
tracking. To this end, we introduce Panini, an intermedi-
ate representation with a novel refinement type system that
incorporates domain knowledge of ad hoc parsing.
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1 Motivation

Ad hoc parsers are pieces of code that use common string
functions like split, trim, or slice to effectively perform
parsing: łthe process of structuring a linear representation
in accordance with a given grammarž [29]. But they do so
without employing any formal parsing techniques, such as
combinator frameworks [38] or parser generators [35, 49];
the łgiven grammarž remains entirely implicit.
The Python expression in Figure 1 is a typical example

of an ad hoc parser. It turns a string of comma-separated
numbers into a list of integers. Code like this can be found in
functions handling command-line arguments, reading config-
uration files, or as part of any number of minor programming
tasks involving strings. Commonly, this kind of parsing code
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xs = map(int, s.split(","))

s → int ∣ int , s

int → space* (+ ∣ -)? digit (_? digit)* space*

digit → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

space → ⎵ ∣ \t ∣ \n ∣ \v ∣ \f ∣ \r

Inferred Grammar Inferred Inputs

(empty)

1,2,3

10_000,4

+01_2,␣␣3␣

Figure 1. An ad hoc parser and its inferred grammar.

is deeply entangled with application logic, a phenomenon
known as shotgun parsing [45].
Figure 1 also demonstrates our vision of grammar infer-

ence. In the same way that type inference allows program-
mers to generally omit type annotations because they can
be automatically recovered from the surrounding context,
grammar inference lets programmers recover the implicit
input grammars of their ad hoc parsers. A parser without
an explicit grammar is very much like a function without a
type signatureÐit might still work, but you will not have any
guarantees about it before actually running the program.

The grammar in Figure 1 immediately reveals a great deal
about a deceptively simple looking expression, e.g., that the
empty string is not a valid input (it will in fact crash the
program) or that single _ characters can be used for grouping
digits. Grammars are finite but complete formal descriptions
of all values an input string can have without the program
going wrong. They help assure us that our input languages
have favorable properties and our parsers do not contain
otherwise hidden features or bugs. The language-theoretic
security community regards grammars as vital in assuring
the correctness and safety of input handling routines [54, 55].

We propose an end-to-end grammar inference system [56]
(Figure 2) that would allow programmers to get input gram-
mars from unannotated ad hoc parser source code łfor free.ž
This enables a range of exciting new possibilities:

● Interactive Documentation that is closely linked to the
underlying code and always up-to-date [39] (Figure 1).

● Bi-directional Parser Synthesis, combining grammar
inference with parser generation to enable grammar-based
program transformations [17], program sketching [40, 50,
58], and live bi-directional programming [15, 43].

● Grammar Mining & Learning, which allows us to de-
tect parser code clones [36, 61], enhance semantic code
search [26, 44, 51], and add grammar-awareness to seman-
tic change tracking [30, 52] (Figure 3).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 2. End-to-end grammar inference.

2 Problem

Given the source code of a parser, we want to find a grammar
describing the language that the parser recognizes. Note
that this is different from the related problem of finding
a grammar given a set of sentences that can be produced
by that grammar, which is known as grammar induction or
grammatical inference [20, 21, 31].
Obtaining input grammars of programs has been heav-

ily pursued by the fuzzing community [42, 62] for use in
grammar-based fuzzing [4, 32]. Black-box approaches try to
infer a language model by poking the program with seed
inputs and monitoring its runtime behavior [8, 27]. This
has some theoretical limits [2, 3] and the amount of nec-
essary poking (i.e., membership queries) grows exponen-
tially with the size of the grammar. White-box approaches
use techniques like taint tracking to monitor data flow be-
tween variables [33] or observing character accesses of input
strings [28]. These approaches can produce fairly accurate
and human-readable grammars, at least in test settings, but
they rely on dynamic execution and thus require complete
runnable programs. They also do not provide any guarantees
about the accuracy of the inferred grammars.

Precise formal reasoning over strings can be accomplished
using string constraint solving (SCS), a declarative paradigm
of modeling relations between string variables and solving
attendant combinatorial problems [1]. However, collecting
string constraints again usually requires (dynamic) symbolic
execution [37], and practical SCS applications are generally
concerned with the inverse of our problem: modeling the
possible strings a function can return or express [13], instead
of the strings a function can accept.

We view grammar inference as a special case of precondi-
tion inference. But despite a wide variety of approaches for
computing preconditions [5, 18, 23, 48, 57], we are not aware
of any that focus specifically on string operations, or that
would allow us to reconstruct an input grammar.

3 Approach

3.1 The Panini Language

Our approach is centered around Panini,1 an intermediate
representation of ad hoc parser code. It is a small 𝜆-calculus

1Named after the ancient Indian grammarian Pān. ini [10], as well as the

delicious Italian sandwiches.

🤖
⚠ Merging #420 (6a36b23) into main (224b18b)  
will change the input grammar of a function.

18 18   def baz(s): 

19    -   i = 0 

   19 +   i = 1 

20 20     while s[i] == "a" 

21 21       i += 1 

22 22     assert s[i] == "b"

Before: 

baz → a*bΣ*

After: 

baz → Σa*bΣ*

Figure 3. Grammar-aware semantic change tracking: a code
review bot informs the programmer that a recent commit
has introduced a change in input grammar.

in A-normal form (ANF) [25] that is solely intended for type
synthesis. Panini programs are neither meant to be executed
nor written by hand. Ad hoc parser source code, written in a
general-purpose programming language like Python, is first
transformed into static single assignment (SSA) form [11]
and then into a Panini program via an SSA-to-ANF transfor-
mation [14].
Panini has a refinement type system in the Liquid Types

tradition [53, 59]. Base types like int or string are deco-
rated with predicates in a logic decidable using satisfiability

modulo theories (SMT) [7], specifically quantifier-free lin-
ear arithmetic with uninterpreted functions (QF_UFLIA) [6]
extended with a theory of operations over strings [9]. For
example, {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0} is the type of natural numbers
and (𝑠 ∶ string) → {𝜈 ∶ int ⋃︀ 𝜈 ≥ 0 ∧ 𝜈 ≙ ⋃︀𝑠 ⋃︀} is a dependent
function type whose outputs can refer to input types. Type
synthesis generates verification conditions (VCs) [47], which
are constraints in the refinement logic whose validity implies
that the synthesized types are a correct specification of the
program. VCs can be discharged by most off-the-shelf SMT
solvers; we currently use Z3 [22].

We based Panini on the Sprite tutorial language by Jhala
and Vazou [34], and incorporated ideas from various other
systems [16, 24, 46]. Notably, we use the Fusion algorithm
by Cosman and Jhala [16] to enable inference of the most
precise local refinement type for all program statements,
without requiring any prior type annotations except for li-
brary functions. Another advantage of the Fusion approach
is the preservation of scoping structure, yielding VCs that
more closely match the original program structurally.

VCs might initially contain 𝜅 variables denoting unknown
refinements. These arise naturally as part of type synthesis,
e.g., to allow information to flow between intermediate terms,
but can also be added explicitly as refinement holes. Before
discharging a VC, all of its 𝜅 variables need to be replaced by
concrete refinement predicates. It is generally desirable to
find the strongest satisfying assignments for all 𝜅 variables
given the overall constraints.
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𝝀𝑠 . ∀𝑠 . 𝜅0(𝑠) ⇒

let 𝑥 ≙ charAt 𝑠 0 in 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 ≙ 𝑠⋃︁0⨄︁⇒ 𝑠⋃︁0⨄︁ ≙ 𝑥
let 𝑝1 ≙ match 𝑥 "a" in ∀𝑝1. 𝑝1⇔ 𝑥 ≙ "a"⇒ (𝑝1 ∧ 𝑠⋃︁0⨄︁ ≙ "a") ∨ (¬𝑝1 ∧ 𝑠⋃︁0⨄︁ ≠ "a")

if 𝑝1 then (𝑝1 ⇒ 𝑠⋃︁0⨄︁ ≙ "a"
let 𝑛 ≙ length 𝑠 in ∀𝑛. 𝑛 ≥ 0 ∧𝑛 ≙ ⋃︀𝑠 ⋃︀⇒ 𝑠⋃︁0⨄︁ ≙ "a" ∧ ⋃︀𝑠 ⋃︀ ≙ 𝑛
let 𝑝2 ≙ equals 𝑛 1 in ∀𝑝2. 𝑝2⇔ 𝑛 ≙ 1⇒ (𝑝2 ∧ 𝑠 ≙ "a") ∨ . . .

assert 𝑝2 𝑝2) 𝑠 ≙ "a"

else ∧ (¬𝑝1 ⇒ 𝑠⋃︁0⨄︁ ≠ "a"
let 𝑦 ≙ charAt 𝑠 1 in 1 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑦. 𝑦 ≙ 𝑠⋃︁1⨄︁⇒ 𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ 𝑦
let 𝑝3 ≙ match 𝑦 "b" in ∀𝑝3. 𝑝3⇔ 𝑦 ≙ "b"⇒ 𝑠⋃︁0⨄︁ ≠ "a" ∧ ((𝑝3 ∧ 𝑠⋃︁1⨄︁ ≙ "b") ∨ . . . )
assert 𝑝3 𝑝3) 𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b"

(𝑠 ≙ "a") ∨ (𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b")

Figure 4. A Panini program (left), its verification condition (middle), and a derivation of 𝜅0 (right).

3.2 Grammar Inference

To infer a parser’s input grammar, we need to find the most
precise solution for the 𝜅 variable representing the refine-
ment of the parser’s input string argument. Consider the
following simple parser:

if s[0] == "a":

assert len(s) == 1

else:

assert s[1] == "b"

Figure 4 shows the equivalent Panini program, alongside
the VC for the top-level function typeÐnotice how it closely
mirrors the program’s structure. On the right, we show how
to derive a precise assignment for 𝜅0, the unknown refine-
ment over the input string 𝑠 . Our key insight is that humans
tend to write small parsers in a top-down, recursive descent,
𝐿𝐿(1) style. We can exploit this common structure and walk
the VC’s top-level consequent to build 𝜅0 piece by piece,
using domain knowledge of string operations to minimize
predicates until we satisfy the VC.

We begin with the constraint 0 < ⋃︀𝑠 ⋃︀ ∧ ∀𝑥 . 𝑥 ≙ 𝑠⋃︁0⨄︁⇒ . . . ,
which tells us that 𝑠 is a string of at least one character
and that we can identify this character by the variable 𝑥 .
The string might have more characters, but we know that it
definitely has at least this one. So we can make a preliminary
assignment 𝜅0 ≅ 𝑠⋃︁0⨄︁ ≙ 𝑥 .
Next, the constraint ∀𝑝1. 𝑝1⇔ 𝑥 ≙ "a"⇒ . . . makes us

branch into two possible worlds: one where the predicate
is true and one where its opposite is true. Accordingly, we
update our preliminary assignment

𝜅0 ≅ (𝑝1 ∧ 𝑠⋃︁0⨄︁ ≙ "a") ∨ (¬𝑝1 ∧ 𝑠⋃︁0⨄︁ ≠ "a").

As we continue on to subsequent constraints, we may be
able to further refine and expand each of these branches, or
to eliminate some of them altogether if they can never be
satisfiable.

After we have descended into all quantifiers and implica-
tions, resolved all names, and simplified all equations, we
arrive at the final assignment

𝜅0(𝑠) ≐ (𝑠 ≙ "a") ∨ (𝑠⋃︁0⨄︁ ≠ "a" ∧ 𝑠⋃︁1⨄︁ ≙ "b"),

which can be equivalently written in grammar form as

𝑠 → a ⋃︀ (Σ/a)bΣ∗.

4 Methodology

Our primary hypothesis is that we can infer accurate gram-
mars for ad hoc parsers using a framework of syntax-driven
refinement type synthesis that incorporates domain-specific
knowledge of parsing. We intend to prove the soundness of
our approach and to demarcate its limits. More practically,
we will provide an implementation of the Panini language.

Our ultimate goal is an end-to-end grammar inference
system (Figure 2). This necessitates solving a number of ad-
ditional technical problems surrounding the inference step:
extracting the relevant parts of the initial source code, e.g.,
using a form of program slicing [60]; ensuring source func-
tion specifications are correct (ideally in a mechanized way);
preserving precise source location information to allow trace-
ability of grammar productions; and transforming refine-
ment predicates into representations that facilitate grammar
comparisons [41] and can be shown in familiar form, e.g.,
ABNF [19] or railroad diagrams [12] (we found a graph rep-
resentation with bounded edge constraints to be promising).
We intend to ensure the effectiveness of our system by

evaluating it on a corpus of curated ad hoc parser samples
from the real world. Additionally, we plan on building pro-
totypes of at least some of our proposed applications (ğ 1) to
demonstrate practical viability. We also intend on conduct-
ing a large-scale mining study of inferred grammars, and are
currently conducting a user study on grammar comprehen-
sion to determine the benefits and drawbacks of different
textual and visual grammar representations.
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