FAKULTAT Diplomarbeitsprésentation

FUR INFORMATIK Jelnlauter

EllsJuages

Faculty of Informatics

Durability and Contention
in Software Transactional Memory

Technische Universitat Wien
Institut flir Computersprachen

Masterstudium:

Arbeitsbereich: Programmiersprachen und Ubersetzer

Software Engineering & Internet Computing

Betreuer: Univ.-Prof. Dr. Jens Knoop
Mitbetreuerin: Assoc. Prof. Gabriele Keller, UNSW

Michael Schroder

Software Transactional Memory

Software Transactional Memory (STM) vastly simplifies concurrent
programming by grouping memory operations into atomic blocks.

The following Haskell function increments a transactional variable

iInc v= do x < readTV
writeTVar v
return o

the system, the function atomic

Problem 1:

atomically (inc v)

and returns its previous contents:

To perform an STM computation and make its effects visible to

ar v

(@ + 1)

ally :: STM a — 10 a is used:

Problem 2:

Durability

Manipulating memory using STM is easy, but persisting those
manipulations in a transactionally safe way is impossible.

Two obvious but unsafe ways of trying to add durability to STM:

1. do x < atomically m
serialize x

Problem: serialization might fail after transaction committed

2. atomically $ do = <+ m
unsafelOToSTM (serialize x)

Problem: transaction might abort or retry after serialization

"

Introduce a new STM primitive
atomicallyWithlO :: STMa — (a - 10b) — 10 b

which is like atomically, but additionally takes a finalizer — an |/O
action that can depend on the result of the STM computation.

The finalizer is combined with the STM transaction such that:

LT
2. T

ne finalizer is only run if the transaction is guaranteed to commit.

ne transaction only commits if the finalizer finishes successfully.

the design is
formalized by
an operational
semantics

» durability is now trivially possible:

atomicallyWithlO m serialize

more generally, finalizers enable interactive transactions
potential foundation for a distributed STM
http://github.com/mcschroeder/ghc

>

Contention

Many standard data structures, when used in a transactional setting,
cause unreasonably high numbers of conflicts.

Consider TVar (HashMap a):

» any change to the container invalidates all other transactions
» but we should only care about the subset relevant to our transaction

» if transaction A updates element k; and transaction B deletes
element ko and if k; #~ ko, then there should be no conflict

"

Transactional Trie

The transactional trie is a new contention-free data structure,
specifically tailored to the needs of transactional concurrency.

» based on the lock-free concurrent trie

» uses unsafelOToSTM to perform atomic compare-and-swap
operations independently of the surrounding STM transaction

» to preserve safety, leaves are stored as TVar (Maybe a)
» once a leaf is added, it is never removed

empirical evaluation
of 200 000 random
transactions on an
Amazon EC2 C3
extra-large instance
with 16 cores

HashMap

» transactional trie

g 10 12 14 16

» eliminates all spurious conflicts
» up to 8 times faster and using almost 10 times less memory
» http://hackage.haskell.org/package/ttrie

An example application using both finalizers and transactional tries to :
build a lightweight database framework on top of STM is available at |
http://github.com/mcschroeder/social-example I
]

-——————————————————————————————

Kontakt: michael.schroeder@alumni.tuwien.ac.at




