
build a lightweight database framework on top of STM is available at
http://github.com/mcschroeder/social-example

M; Θ, {}
∗=⇒ return N; Θ ,∆

F N; (Θ ∪ ∆)
∗−→ return P; Θ̂

P[atomicallyW
ithIO M F]; Θ → P[return P]; Θ ∪ Θ̂

(ARET)

M; Θ, {}
∗=⇒ return N; Θ ,∆

F N; (Θ ∪ ∆)
∗−→ throw P; Θ̂

P[atomicallyW
ithIO M F]; Θ → P[return P]; Θ̂

(ATHROW2)

Masterstudium:
Software Engineering & Internet Computing

Diplomarbeitspräsentation

Durability and Contention
in Software Transactional Memory

Michael Schröder

uages
comp
lang

uter

Technische Universität Wien
Institut für Computersprachen

Arbeitsbereich: Programmiersprachen und Übersetzer
Betreuer: Univ.-Prof. Dr. Jens Knoop

Manipulating memory using STM is easy, but persisting those
manipulations in a transactionally safe way is impossible.

Two obvious but unsafe ways of trying to add durability to STM:
1. do x ← atomically m

serialize x
Problem: serialization might fail after transaction committed

2. atomically $ do x ← m
unsafeIOToSTM (serialize x)

Problem: transaction might abort or retry after serialization

STM Finalizers

Introduce a new STM primitive
atomicallyWithIO :: STM a → (a → IO b) → IO b

which is like atomically, but additionally takes a — an I/O
action that can depend on the result of the STM computation.

1.
2.

Many standard data structures, when used in a transactional setting,

Consider TVar (HashMap a):
any change to the container invalidates all other transactions
but we should only care about the subset relevant to our transaction
if transaction A updates element k1 and transaction B deletes
element k2 and if k1 = k2

Transactional Trie

The transactional trie is a new contention-free data structure,
speci�cally tailored to the needs of transactional concurrency.

based on the lock-free concurrent trie
uses unsafeIOToSTM to perform atomic compare-and-swap
operations independently of the surrounding STM transaction
to preserve safety, leaves are stored as TVar (Maybe a)
once a leaf is added, it is never removed

Problem 1:
Durability

Problem 2:
Contention

Software Transactional Memory

programming by grouping memory operations into atomic blocks.
The following Haskell function increments a transactional variable
and returns its previous contents:

inc v = do x ← readTVar v
writeTVar v (x + 1)
return x

the system, the function atomically :: STM a → IO a is used:
atomically (inc v)

the design is
formalized by
an operational
semantics

empirical evaluation
of 200 000 random
transactions on an

Amazon EC2 C3
extra-large instance

with 16 cores 125 ms

250 ms

500 ms

1 s

2 s

1 2 4 6 8 10 12 14 16

tim
e

HashMap

transactional trie

up to 8 times faster and using almost 10 times less memory
http://hackage.haskell.org/package/ttrie

durability is now trivially possible:
atomicallyWithIO m serialize

potential foundation for a distributed STM
http://github.com/mcschroeder/ghc

Mitbetreuerin: Assoc. Prof. Gabriele Keller, UNSW

Kontakt: michael.schroeder@alumni.tuwien.ac.at

