
Durability and Contention in
Software Transactional Memory

DIPLOMARBEIT
zur Erlangung des akademischen Grades

Diplom-Ingenieur
im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Schröder
Matrikelnummer 0725699

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ. Prof. Dipl.-Inf. Dr. rer. nat. Jens Knoop
Mitwirkung: Assoc. Prof. Gabriele Keller, University of New South Wales

Wien, 1. August 2015
Michael Schröder Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Durability and Contention in
Software Transactional Memory

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Software Engineering & Internet Computing

by

Michael Schröder
Registration Number 0725699

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ. Prof. Dipl.-Inf. Dr. rer. nat. Jens Knoop
Assistance: Assoc. Prof. Gabriele Keller, University of New South Wales

Vienna, 1st August, 2015
Michael Schröder Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Schröder
Rosasgasse 15/8
1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. August 2015
Michael Schröder

v

Acknowledgements

I thank Jens Knoop, my supervisor at the Vienna University of Technology, for his
advice and support, as well as Gabriele Keller for inviting me to visit the University of
New South Wales for three months to work on this thesis, and the Vienna University
of Technology for supporting this visit and my research with a stipend. I also thank
Manuel Chakravarty for suggesting the name “finalizers” and Simon Meier for pointing
out some issues with the original transactional trie benchmarks.

vii

Kurzfassung

Software Transactional Memory (STM) vereinfacht nebenläufige Programmierung, in-
dem es erlaubt Speicheroperationen zu atomaren Blöcken zusammenzufassen. STM Trans-
aktionen bieten Atomarität, Konsistenz und Isolation, und sind damit Datenbanktrans-
aktionen ähnlich. Im Unterschied zu Datenbanken bietet STM allerdings keine Dauer-
haftigkeit.

Ich habe Haskell’s STM Implementierung mit einem Mechanismus erweitert, mit dem
man finalizer zu atomaren Blöcken hinzufügen kann. Die neue Operation atomicallyWithIO
erlaubt dem Programmierer die sichere Ausführung von beliebigen I/O-Operationen
während der Commit-Phase einer Transaktion. Dies kann dazu benutzt werden STM
dauerhaft zu machen, hat aber noch mehr Anwendungsmöglichkeiten. Zum Beispiel
könnte ein finalizer den Benutzer fragen anstehende Resultate zu genehmigen, was in-
teraktive Transaktionen ermöglicht.

Ein weiteres häufiges Problem mit STM ist contention. Viele Standarddatenstruk-
turen, wenn sie in einer transaktionalen Umgebung verwendet werden, erzeugen ei-
ne übermäßig hohe Anzahl an Konflikten. Ich stelle eine neue contention-freie STM-
Datenstruktur vor, den transactional trie. Er basiert auf dem lock-free concurrent trie
und benutzt lokale Seiteneffekte, um unnötige Konflikte zu vermeiden, während er gleich-
zeitig die transaktionale Sicherheit bewahrt.

Sowohl finalizer als auch der transactional trie sind Beispiele für das Kombinieren von
Transaktionen mit Seiteneffekten. Finalizer sind ein allgemeiner top-down Ansatz, wäh-
rend der transactional trie Seiteneffekte auf der Mikroebene integriert. Ich demonstriere
die Effektivität von beidem, in dem ich eine vollständige Beispielsanwendung baue, die
STM als Datenbanksprache benutzt, Dauerhaftigkeit bietet und contention vermeidet.

ix

Abstract

Software Transactional Memory (STM) immensely simplifies concurrent programming by
allowing memory operations to be grouped together into atomic blocks. Like database
transactions, STM transactions provide atomicity, consistency and isolation. Unlike
databases, they do not provide durability.

I extend Haskell’s STM implementation with a mechanism to add finalizers to atomic
blocks. The new operation atomicallyWithIO allows the programmer to safely execute
arbitrary I/O during the commit-phase of a transaction. This can be used to make STM
durable, but it turns out to have even more applications. For example, a finalizer could
ask the user to approve pending results, enabling interactive transactions.

Another common problem with STM is contention. When used in a transactional
setting, many standard data structures cause unreasonably high numbers of conflicts. I
propose a new STM data structure, the transactional trie, a contention-free hash map.
It is based on the lock-free concurrent trie, and uses localized side-effects to eliminate
unnecessary conflicts while preserving transactional safety.

Both finalizers and the transactional trie are examples of combining transactions
with side-effects. Finalizers are a general top-down approach, while the transactional
trie incorporates side effects on the micro-level. I demonstrate the effectiveness of both
by building a full sample application that uses STM as a database language, providing
durability and avoiding contention.

xi

Contents

1 Motivation 1

2 Transactional Memory with Finalizers 5
2.1 STM and ACID . 5
2.2 Finalizers . 7
2.3 Related Work . 10
2.4 Semantics of STM . 11
2.5 Semantics of finalizers . 18
2.6 Implementation . 27

3 Transactional Tries 31
3.1 Background . 32
3.2 Implementation . 34
3.3 Memory efficiency . 39
3.4 Evaluation . 42

4 STM as a database language 49
4.1 Example: a social network . 49
4.2 The TX monad . 52
4.3 Caveats . 55

5 Conclusions & Perspectives 57
5.1 Related Work . 57
5.2 Future Work . 59

Bibliography 61

Publications 65

xiii

CHAPTER 1
Motivation

It is a widely held opinion that concurrent programming is difficult and error-prone.
Low-level synchronization mechanisms, such as locks, are notoriously tricky to get right.
Deadlocks, livelocks, heisenbugs and other issues encountered when writing complex
concurrent systems are usually hard to track down and often confound even experienced
programmers.

To simplify concurrent programming, higher-level abstractions are needed. One such
abstraction is Software Transactional Memory (STM). Briefly, this technique allows the
programmer to group multiple memory operations into a single atomic block, not unlike
a database transaction. When implemented in a high-level language such as Haskell,
with its emphasis on purity and its strong static type system, STM becomes especially
powerful.

However, it is not always as powerful as we would like it to be:

• While manipulating memory using STM is easy, persisting those manipulations in
a transactionally safe way is frustratingly impossible. There is no way to achieve
durability, an important component of database transactions.

• Some pure data types, such as maps, can be highly inefficient when combined with
STM. The reason is contention: certain common access patterns cause unreason-
ably high numbers of transactional conflicts.

In this thesis, I will address these problems by combining transactions with side-
effects. In particular, the contributions of my work are:

• A new STM primitive called atomicallyWithIO that allows the user to attach a
finalizer to an STM transaction. Such finalizers are arbitrary I/O actions that can
be used to serialize transactional data or incorporate external information into a
transaction. I provide a detailed discussion of the semantics of this extension to
STM, as well as my implementation of it in the Glasgow Haskell Compiler (GHC).
(Chapter 2)

1

• A contention-free STM data structure, the transactional trie. It is based on the
concurrent trie, but lifted into an STM context and combines transactions with
carefully considered internal side effects. I present its design and implementation in
Haskell, and evaluate it against other STM-specialized data structures. (Chapter 3)

• A demonstration of the effectiveness of both finalizers and transactional tries by
constructing a thin database abstraction on top of STM, which I then use to build
a simple social networking site. (Chapter 4)

In the remainder of this introductory chapter, I will give a brief overview of Haskell’s
STM interface.

Background: STM in Haskell
Here are the main data types and operations of STM in Haskell:

data STM a
instance Monad STM
atomically :: STM a → IO a
data TVar a
newTVar :: a → STM (TVar a)
readTVar :: TVar a → STM a
writeTVar :: TVar a → a → STM ()
retry :: STM a
orElse :: STM a → STM a → STM a

Atomic blocks in Haskell are represented by the STM monad. Inside this monad, we
can freely operate on transactional variables, or TVars. We can read them, write them
and create new ones. When we want to actually perform an STM computation and make
its effects visible to the rest of the world, we apply atomically to the computation. This
function turns an STM block into a transaction in the IO monad that, when executed,
will take place atomically with respect to all other transactions.

For example, the following code snippet increments a transactional variable v:

atomically $ do x ← readTVar v
writeTVar v (x + 1)

The use of atomically guarantees that no other thread can come in between the reading
and writing of the variable. The sequence of operations happens indivisibly.

An important aspect of Haskell’s STM implementation is that it is fully composable.
Smaller transactions can be combined into larger transactions without having to know
how these smaller transactions are implemented. An important tool to make this possible
is the composable blocking operator retry. Conceptually, retry abandons the current
transaction and runs it again from the top. In the following example, the variable v is

2

decremented, unless it is zero, in which case the transaction blocks until v is non-zero
again:

atomically $ do x ← readTVar v
if x ≡ 0

then retry
else writeTVar v (x − 1)

In addition to retry, there is the orElse combinator, which allows “trying out” transactions
in sequence. m1 ‘orElse‘ m2 first executes m1; if m1 returns, then orElse returns; but if
m1 retries, its effects are discarded and m2 is executed instead.

STM is also robust against exceptions. The standard functions throw and catch
act as expected: if an exception occurs inside an atomic block and is not caught, the
transaction’s effects are discarded and the exception is propagated.

GHC’s implementation of STM also contains support for data invariants. Using the
alwaysSucceeds function, one can introduce an invariant over transactional variables that
is dynamically checked on every atomic update.

For more background on Haskell’s STM, including its implementation, see the original
STM papers (Harris, Marlow, et al. 2005; Harris and Peyton Jones 2006). For a more
thorough exploration of not only STM but also other Haskell concurrency mechanisms,
read Simon Marlow’s excellent book on that topic (Marlow 2013b).

3

CHAPTER 2
Transactional Memory with

Finalizers

2.1 STM and ACID
Atomicity, consistency, isolation and durability (ACID) are the cornerstones of any
database system. Haskell’s STM gives us three of these properties: transactions are
always atomic and have an isolated view of memory; dynamically-checked invariants can
be used to ensure that the state of the system is consistent. The one missing property
is durability.

Making data durable means serializing it to storage. This is of course an I/O action,
which is not allowed within the confines of STM. For good reason: STM transactions can
retry at any time and I/O actions are in general neither idempotent nor interruptible.
However, notice that for the purposes of durability it is not necessary to run arbitrary
I/O at arbitrary moments during a transaction. We merely need to run a single I/O
action to serialize our data at the end of the transaction.

The naive approach is to first atomically perform some STM computation and then
independently serialize its result:

durably :: STM a → IO ()
durably m = do x ← atomically m

serialize x

There are two issues with this. First, by virtue of the serialization happening indepen-
dently of the atomic block, after we have performed a transaction another thread could
perform a second transaction and serialize it before we have finished serializing the first
one. Depending on our serialization method, we could end up with an inconsistent state
between the memory of our program and what is stored on disk. At the very least, there
is no guarantee that the ordering of events is preserved. Secondly, the function serialize

5

might not terminate at all; it could throw an exception or its thread could die. Again
we would end up with an inconsistent state and possibly data loss.

So the serialization needs to be somehow coupled with the atomic transaction in such
a way that the transaction only commits after the data has been serialized. We might
try to use the ominously named unsafeIOToSTM function:

durably :: STM a → IO ()
durably m = atomically $ do x ← m

unsafeIOToSTM (serialize x)

The type of unsafeIOToSTM is IO a → STM a, effectively allowing us to circumvent the
type system so we can unsafely perform I/O in the STM monad. But this too must
fail: even if it is the last statement in the atomic block, serialize is performed before
the transaction commits. The transaction might yet have to retry because of a conflict
with another transaction. In doing so it also executes serialize again. Unless serialize
is idempotent, this is certainly undesirable. Furthermore, if the thread receives an
asynchronous exception, the transaction will abort in an orderly fashion, while serialize,
with its irrevocable side effects, cannot be undone.

This leads us to the realization that the transaction must only commit after the
data has been serialized, and the data must only be serialized after the transaction has
committed. We can escape the paradox by clarifying the second restriction: the data
can in fact already be serialized after the transaction is merely guaranteed to commit.
Meaning: at the point of serialization, the transaction has not yet made its effects visible
to other transactions, but there are no conflicts preventing it from doing so. And until
serialization is finished there must be no way for any such conflicts to arise; for all intents
and purposes, the transaction must count as committed, even though its effects are not
visible yet and it could still roll back by its own volition (but not due to conflicts with
other transactions).

What is needed, then, is a new STM primitive. Not a combination of existing
functions, but a new fundamental operation that does exactly what we want. It would
have to be implemented directly in the runtime system and we would have to make sure
that it is sound and does not allow us to undermine the safety of STM in general.

I will now describe this primitive, give its detailed semantics and talk about my
implementation of it in the Glasgow Haskell Compiler.

6

2.2 Finalizers
The main idea is to introduce a new function

atomicallyWithIO :: STM a → (a → IO b)→ IO b

Like the existing atomically operation, atomicallyWithIO transforms a computation of
type STM a into an I/O action. Additionally, it takes a finalizer, which is a function of
type a → IO b, viz. an I/O action that can depend on the result of the STM computation,
and combines it with the transaction in such a way that:

1. The finalizer is only performed if the STM transaction is guaranteed to commit.

2. The STM transaction only commits (i.e. makes its effects visible to other transac-
tions) if the finalizer finishes without raising an exception.

A detailed specification of atomicallyWithIO will be given in Section 2.5. Everything
described there has been fully implemented by me in GHC and I will discuss that imple-
mentation in Section 2.6. But first let us look at some motivating examples, which will
demonstrate the usefulness of this new operation and highlight some of its finer issues.

2.2.1 Example 1: Printing tickets
Say we want to sell tickets for an event. We have a set number of tickets, stored in a
transactional variable tickets of type TVar Int, and the following function to get the next
available ticket:

nextTicket :: STM Int
nextTicket = do t ← readTVar tickets

when (t ≡ 0) (error "sold out")
writeTVar tickets (t − 1)
return t

Our box offices can then use a statement like t ← atomically nextTicket to safely acquire
a ticket.

However, selling tickets involves actually printing the ticket number on a piece of
paper. What happens if the printer malfunctions, or runs out of paper? If for some
reason the ticket cannot be printed, we do not want that ticket number to be lost
forever; it has not yet been sold after all. The solution, of course, is to use a finalizer:

printTicket :: Int→ IO ()
printTicket t = ...

sellTicket :: IO ()
sellTicket = atomicallyWithIO nextTicket printTicket

If printTicket throws an exception, the transaction rolls back and the tickets counter was
never decreased.

7

2.2.2 Example 2: User input
An I/O action can of course collect input as well. Consider the following example of an
ATM. The function to withdraw money from an account is quite standard; as is, one
would imagine, the function to dispense actual cash from the machine:

type Account = TVar Int
withdraw :: Account→ Int→ STM ()
withdraw acc amount = do bal ← readTVar acc

if bal < amount
then error "insufficient funds"
else writeTVar acc (bal − amount)

dispenseCash :: Int→ IO ()
dispenseCash amount = ...

But instead of simply stringing these two functions together, we use a finalizer to ask
the user for final confirmation before actually going through with the transaction:

getMoney :: Account→ Int→ IO ()
getMoney acc amount = atomicallyWithIO action finalizer

where
action = do withdraw acc amount

bal ← readTVar acc
return bal

finalizer bal = do putStrLn ("New balance: " ++ show bal)
putStrLn "Confirm (yes/no)?"
answer ← getLine
case answer of
"yes"→ dispenseCash amount

→ error "cancelled"

What this example shows is how we can use atomicallyWithIO to play out the re-
vocable effects of a transaction (e.g. withdrawing money from an account) and use the
results in a side-effecting manner (e.g. showing the user the new balance of her account
and asking for confirmation) before committing to those effects.

Note that the balance we show to the user will be the final balance. There is no
way another transaction could change it before we finish the I/O action. Once the I/O
phase begins, the transaction is locked. At this point, only the finalizer itself can cause
a rollback. And only when the finalizer finishes by returning is the transaction made
visible to the rest of the world.

There are obvious performance implications with this scheme: if the I/O action
takes a long time, other transactions will have to wait before they can make progress.
This bottleneck is unavoidable, the transition from STM to I/O naturally creates a
serialization point. It is up to the programmer to not waste undue time or otherwise
ensure that the finalizer finishes in a timely manner, e.g. by using the standard timeout
function.

8

2.2.3 Example 3: Nesting
Since the finalizer can be an arbitrary I/O action, the question arises: can we run
atomicallyWithIO inside atomicallyWithIO?

Running atomically inside atomically is evidently not possible — the type system for-
bids it. Even something like

atomically (unsafeIOToSTM (atomically m))

will not work: GHC detects such nefariousness and throws a runtime exception. The
runtime system does not support running a transaction inside another transaction, be-
cause there is no single intuitive way to resolve problems such as conflicting transactions
or nested rollback. Luckily, it does not appear that this kind of nesting is necessary in
practice or even useful.

But running atomically within a finalizer is a different story. First of all, this is
eminently useful. Consider the following example, in which a counter is atomically
increased only after confirmation has been received from two different servers. For
efficiency, both servers are queried in parallel:

atomicallyWithIO (do n ← readTVar counter
writeTVar x (n + 1)
return n

)
(λn → do (r1, r2)← concurrently (post n server1)

(post n server2)
if r1 ∧ r2

then return ()
else error "rejected"

)

The function concurrently :: IO a → IO b → IO (a, b) is exported by the async library
(Marlow 2013a), which provides “a set of operations for running IO operations asyn-
chronously and waiting for their results.” The library is implemented using STM. When
executing concurrently, there are actually multiple atomic transactions happening behind
the scenes.

Many complex I/O actions might use STM internally.1 There is no reason why these
should not also be usable within the finalizer of atomicallyWithIO. The type system allows
it, and the semantics are clear as well: finalizers are already regarded as irrevocable. A
transaction run within the finalizer of another transaction is completely independent
from that other transaction. There is only one restriction: the inner transaction cannot
modify any of the transactional variables used by the outer transaction; this would
inevitably lead to a deadlock, as the inner transaction would have to wait for the outer

1 Indeed, as of GHC 7.8, the base library itself makes use of STM in GHC.Event.Unique. This module
is in turn used by I/O primitives like threadDelay. Thus STM usage is actually spread throughout large
parts of the I/O subsystem.

9

http://hackage.haskell.org/package/async

transaction to commit and release its locks on the shared variables, while the outer
transaction can only commit once the inner transaction has committed.

But are these kinds of deadlock situations not exactly what STM is supposed to
protect us from? True, but I feel that introducing the possibility of deadlocks — limited
to this one specific scenario, in which the nested transactions operate on the same set
of variables, which I believe is rather artificial — is justified by the great usefulness
of allowing independent STM transactions to run during an STM finalizer. Also, the
runtime system can always detect these kinds of deadlocks instead of simply looping
forever, and it will throw an exception that gracefully aborts the transactions involved
and that could be used to pinpoint the source of the bug.

In principle, circular dependencies between shared variables could even be detected
statically, at compile time. Trying to enforce the non-circularity via the type system
would probably involve advanced type system features implemented by GHC exten-
sions, if not require dependent types outright. In any case, it would necessitate major
backwards-incompatible changes to the existing STM API, which is something I wanted
to avoid. Alternatively, one could imagine a separate pre-processing step in the compiler,
but this seems rather inelegant and more trouble than it is worth.

We should note an important point here: a finalizer has the same global view of the
world as any other I/O action running at the same time. In particular, the new value of a
TVar updated during the STM part of the transaction will not be visible in the finalizer.
The variable can be read safely — a deadlock only happens if an inner transaction tries
to modify a shared variable — but the value returned will be its old value, which is the
actual, globally known value of the TVar, at this moment in time.

2.3 Related Work
Extending Haskell’s STM to allow safe combination of atomic blocks with I/O actions
has been proposed from the very beginning. In a 2006 post on the haskell-cafe mailing
list, Simon Peyton Jones suggested an operator

onCommit :: IO a → STM ()

that “would queue up an IO action to be performed when the transaction commits.”2

The stm-io-hooks package (Robinson and Kuklewicz 2012) implements this operator in a
custom STM monad that is meant as drop-in replacement for the system one. onCommit
has the same semantics as atomicallyWithIO: “The commit IO action will be executed
iff the transaction commits.” The difference is that onCommit is truly composable. Any
STM function can use onCommit to add an I/O action to the list of actions to be executed
when the atomic block commits. The caller of atomically does not have to be aware of
it.

While greater composability seems to be more in the spirit of Haskell’s STM, I think
that in this case it is actually dangerous. I/O is fundamentally not composable in the
same way that STM is. Consider the following scenario:

2http://www.haskell.org/pipermail/haskell-cafe/2006-November/019771.html

10

http://hackage.haskell.org/package/stm-io-hooks
http://www.haskell.org/pipermail/haskell-cafe/2006-November/019771.html

foo :: STM ()
foo = do writeTVar a 1

onCommit (serialize "a" 1)
bar :: STM ()
bar = onCommit (error "rollback")
baz :: IO ()
baz = atomically (foo >> bar)

Calling baz will lead to an inconsistent state: the onCommit action of bar will abort the
whole transaction and so the STM effects of foo are rolled back, yet the I/O effects are
not. Even worse, there is no way from looking only at baz to discern that any of this
is going on. The composability of onCommit hides effects that in my opinion should be
made explicit. This may not be an issue in all cases, but for serialization it clearly is.
Using atomicallyWithIO is safer in this regard, at the cost of reduced composability.

2.4 Semantics of STM
I now formalize my design by giving an operational semantics. In this section, I present
an overview of the original semantics of STM Haskell as described by Harris, Marlow,
et al. (2005), including the revised exception semantics from their post-publication ap-
pendix. Using this as a foundation, I will then add the changes necessary to implement
finalizers in Section 2.5. There I will also include the invariant semantics described by
Harris and Peyton Jones (2006).

Throughout my presentation of these semantics, I aimed to keep as close to the
original papers as possible to ease cross-referencing. However, a few minor modifications
have been made to better reflect the current state of GHC, such as changing the names
of some of the primitives.

Figures 2.1 to 2.4 give the complete syntax and semantics of the original version of
STM Haskell. The key idea is to separate I/O transitions (“→”, Figure 2.3) from STM
transitions (“⇒”, Figure 2.4). Execution proceeds by non-deterministically choosing a
thread and performing a single I/O transition. Thus, the execution of different threads
may be interleaved and we have concurrency on the I/O level. However, STM transitions
cannot interleave. They are only ever performed as premises of the atomically operator
and the resulting state change is thus regarded as a single atomic step on the I/O level.

Simply requiring that atomically must reduce (on the STM level) to either return or
throw, and not retry, obviates the need for modeling transaction logs or rollback. These
matters are left for the implementation.

11

Syntax The syntax of values and terms (Figure 2.1) is entirely conventional, except
that some monadic combinators are treated as values. The do-notation used in the
preceding sections is of course just the usual syntactic sugar for the monadic operators
>>= and return:

do { x <- e; Q } ≡ e >>= (\x -> do { Q })

do { e; Q } ≡ e >>= (_ -> do { Q })

do { e } ≡ e

A program state P ; Θ consists of a thread soup P and a heap Θ. The thread soup P
is a multi-set of threads with each thread consisting of a single term Mt, where t is the
thread ID. The heap Θ maps references to terms.

Additionally, we sometimes want to explicitly track a set of allocation effects ∆. This
is a redundant subset of the heap. We mainly need it during exception handling, where
we want to roll back heap effects but have to retain allocation effects.

When describing a transition between program states, we use an evaluation context
to identify the active site of the transition. The program evaluation context P arbi-
trarily chooses a thread from the soup. This corresponds to the scheduler of a real
implementation. STM terms are then evaluated using the context S.

Administrative transitions A few fundamental transitions are used on both the
I/O and the STM level (Figure 2.2). The rule (BIND), which implements sequential
composition in the monad, as well as (THROW) and (RETRY) are quite ordinary.
(EVAL) allows evaluation of terms. It uses a function V, which is entirely standard and
whose definition is omitted.

The I/O level rule (ADMIN) lifts administrative rules into the I/O world. (AADMIN)
does the same for STM.

12

x, y ∈ V ariable
r, t ∈ Name

c ∈ Char

Value V ::= r | c | \ x-> M
| return M | M >>= N
| putChar c | getChar
| throw M | catch M N
| retry | M `orElse` N
| newTVar
| readTVar r | writeTVar r M
| forkIO M
| atomically M

Term M, N ::= x | V | M N | . . .

Thread soup P, Q ::= Mt | (P | Q)
Heap Θ ::= r ↪→M

Allocations ∆ ::= r ↪→M

Evaluation contexts S ::= [·] | S >>= M
P ::= St | (P | P) | (P | P)

Action a ::= !c | ?c | ϵ

Figure 2.1: The syntax of STM Haskell (Harris, Marlow, et al. 2005)

Administrative transitions M → N

M → V if V[[M]] = V and M ̸≡ V (EVAL)

return N >>= M → M N (BIND)
throw N >>= M → throw N (THROW)

retry >>= M → retry (RETRY)

Figure 2.2: Administrative transitions of STM Haskell (Harris, Marlow, et al. 2005)

13

I/O transitions A top level I/O transition (Figure 2.3) is of the form

P ; Θ a−→ Q; Θ′.

It takes a program state P ; Θ to a new state Q; Θ′ while performing the input/output
action a. The actions !c and ?c denote writing a character to the standard output
and reading a character from the standard input, respectively. The silent action ϵ does
nothing and is usually omitted. These are the only actions in our model, a real system
would of course have many more.

The first two rules, (PUTC) and (GETC), are applicable when the active term is
putChar or getChar, respectively. The transition carries out the appropriate action and
replaces the term with a return containing the result. The rule (FORK) creates a new
thread, with a freshly chosen thread ID t, and adds it to the thread soup. (CATCH1)
and (CATCH2) handle I/O level exceptions in the standard way.

More interesting are the rules (ARET) and (ATHROW). They define the semantics
of atomic blocks. We can see that the only way to perform zero or more STM transitions
(“⇒”) is by performing a single I/O transition (“→”), brought about by the atomically
keyword. Interleaving of STM transitions is therefore not possible. Also, these are the
only I/O level rules that affect the heap, which means that the heap can only be mutated
inside an atomic block.

The rule (ARET) concerns STM terms that ultimately evaluate to return statements.
This means the STM transaction was successfully completed and the updated heap Θ′

becomes visible on the I/O level. If, on the other hand, the STM term evaluates to
throw N , i.e. if the STM transaction throws an exception N , the exception is propagated
to the I/O level and the new heap discarded. Only the allocation effects ∆′ are kept
and made globally visible. This is necessary because the exception value N may contain
references to variables that were allocated inside the transaction and we do not want to
leave dangling pointers around.

14

I/O transitions P ; Θ a−→ Q; Θ′

P[putChar c]; Θ !c−→ P[return ()]; Θ (PUTC)
P[getChar]; Θ ?c−→ P[return c]; Θ (GETC)

P[forkIO M]; Θ → (P[return t] | Mt); Θ t /∈ P, Θ, M (FORK)
P[catch (return M) N]; Θ → P[return M]; Θ (CATCH1)
P[catch (throw P) N]; Θ → P[N P]; Θ (CATCH2)

M → N
P[M]; Θ → P[N]; Θ

(ADMIN)

M ; Θ, {} ∗=⇒ return N ; Θ′, ∆′

P[atomically M]; Θ → P[return N]; Θ′ (ARET)

M ; Θ, {} ∗=⇒ throw N ; Θ′, ∆′

P[atomically M]; Θ → P[throw N]; Θ ∪∆′ (ATHROW)

Figure 2.3: I/O transitions of STM Haskell (Harris, Marlow, et al. 2005)

15

STM transitions An STM transition (Figure 2.4) is of the form

M ; Θ, ∆ ⇒ N ; Θ′, ∆′.

Θ is again the heap, while ∆ redundantly records the allocation effects. Note that none
of these effects are visible globally until we make a transition on the I/O level that
exposes them. All STM transitions stay completely within the STM layer, except for
rule (AADMIN), which just lifts pure administrative transitions.

Most of the STM rules are quite standard. (READ), (WRITE) and (NEW) de-
scribe the reading, writing and allocating of mutable variables. Note how (NEW) makes
allocation effects explicit by modifying ∆.

The rules (OR1-3) handle the kind of nested transactions made possible by the orElse
combinator.3 When encountering a term of the form M1 orElse M2 we always begin by
inspecting the left branch M1. If this evaluates to a return (OR1) or a throw (OR2),
the result is propagated and all memory effects are retained. Keep in mind that we are
still on the STM level. If the whole STM transaction finally evaluates to throw, then
its memory effects are of course globally discarded by the I/O level rule (ATHROW). If
we encounter a retry when evaluating M1, rule (OR3) applies, discarding all memory
effects and continuing with the evaluation of the right branch M2.

Rules (XSTM1-3) describe exception handling within STM by use of the catch com-
binator. When evaluating the body M of a term catch M N , we start with the current
heap Θ and an empty set of allocation effects. On successful evaluation (XSTM1), all
effects are preserved and the catch handler N is ignored. If M throws an exception
(XSTM2), that exception is given to the handler N and only the allocation effects of M
are preserved. If M evaluates to retry (XSTM3), all effects are discarded.

This last set of rules was introduced in the post-publication appendix of Harris,
Marlow, et al. (2005) to alleviate a subtle issue concerning leaking of effects. For a more
elaborate discussion of this issue and of the whole system, refer to that paper.

3Not to be confused with the nesting of atomically calls described in Section 2.2.3.

16

STM transitions M ; Θ, ∆ ⇒ N ; Θ′, ∆′

S[readTVar r]; Θ, ∆ ⇒ S[return Θ(r)]; Θ, ∆ if r ∈ dom(Θ) (READ)
S[writeTVar r M]; Θ, ∆ ⇒ S[return()]; Θ[r 7→M], ∆ if r ∈ dom(Θ) (WRITE)

S[newTVar M]; Θ, ∆ ⇒ S[return r]; Θ[r 7→M], ∆[r 7→M] r /∈ dom(Θ) (NEW)

M → N
S[M]; Θ, ∆ ⇒ S[N]; Θ, ∆

(AADMIN)

M1; Θ, ∆ ∗=⇒ return N ; Θ′, ∆′

S[M1 `orElse` M2]; Θ, ∆ ⇒ S[return N]; Θ′, ∆′ (OR1)

M1; Θ, ∆ ∗=⇒ throw N ; Θ′, ∆′

S[M1 `orElse` M2]; Θ, ∆ ⇒ S[throw N]; Θ′, ∆′ (OR2)

M1; Θ, ∆ ∗=⇒ retry; Θ′, ∆′

S[M1 `orElse` M2]; Θ, ∆ ⇒ S[M2]; Θ, ∆
(OR3)

M ; Θ, {} ∗=⇒ return P ; Θ′, ∆′

S[catch M N]; Θ, ∆ ⇒ S[return P]; Θ′, (∆ ∪∆′)
(XSTM1)

M ; Θ, {} ∗=⇒ throw P ; Θ′, ∆′

S[catch M N]; Θ, ∆ ⇒ S[N P]; (Θ ∪∆′), (∆ ∪∆′)
(XSTM2)

M ; Θ, {} ∗=⇒ retry; Θ′, ∆′

S[catch M N]; Θ, ∆ ⇒ S[retry]; Θ, ∆
(XSTM3)

Figure 2.4: STM transitions of STM Haskell (Harris, Marlow, et al. 2005)

17

2.5 Semantics of finalizers
Now that we are familiar with the original STM semantics, we can extend them to
support finalizers. First, let us realize that atomically is trivially expressed in terms of
atomicallyWithIO:

atomically m ≡ atomicallyWithIO m return

We can therefore use atomicallyWithIO to replace the old atomically completely. This
keeps things simple and saves us from an annoying duplication of rules. Figure 2.5 gives
the revised I/O transitions. There is no need to change anything on the STM level.

Rule (ATHROW) has been replaced by (ATHROW1), which is identical except that
it now uses atomicallyWithIO. Like before, if the STM term evaluates to an exception,
the changed heap Θ′ is discarded and only the allocation effects ∆′ are kept. The finalizer
F given to atomicallyWithIO is simply ignored in this case.

The heart of the change is to be found in rule (ARET), which now has an additional
premise: after the atomic block returns, the finalizer given to atomicallyWithIO must also
evaluate to return. It does so by making zero or more I/O-level transitions. Note that
these transitions begin with the original unchanged heap Θ. The finalizer executes in a
global context, where the results of the STM transaction are not yet visible. Thus the
finalizer cannot know about the modified heap Θ′. (It must know about the allocation
effects ∆′, however: N could contain a reference to a newly allocated variable and we do
not want any dangling pointers.) The final heap resulting from the (ARET) transition
is the union of the STM result heap Θ′ with the result heap of the I/O transition, Θ̂.

The new rule (ATHROW2) handles exceptions that occur during the coupled I/O
transition. Like with (ATHROW1), the STM result heap Θ′ is discarded. However, the
I/O result heap Θ̂ must be kept, because it could have already been seen by other I/O
level transitions. This is what we mean when we speak of irrevocable I/O.

18

I/O transitions P ; Θ a−→ Q; Θ′

P[putChar c]; Θ !c−→ P[return ()]; Θ (PUTC)
P[getChar]; Θ ?c−→ P[return c]; Θ (GETC)

P[forkIO M]; Θ → (P[return t] | Mt); Θ t /∈ P, Θ, M (FORK)
P[catch (return M) N]; Θ → P[return M]; Θ (CATCH1)
P[catch (throw P) N]; Θ → P[N P]; Θ (CATCH2)

M → N
P[M]; Θ → P[N]; Θ

(ADMIN)

M ; Θ, {} ∗=⇒ return N ; Θ′, ∆′

F N ; (Θ ∪∆′) ∗−→ return P ; Θ̂
P[atomicallyWithIO M F]; Θ → P[return P]; Θ′ ∪ Θ̂

(ARET)

M ; Θ, {} ∗=⇒ throw N ; Θ′, ∆′

P[atomicallyWithIO M F]; Θ → P[throw N]; Θ ∪∆′ (ATHROW1)

M ; Θ, {} ∗=⇒ return N ; Θ′, ∆′

F N ; (Θ ∪∆′) ∗−→ throw P ; Θ̂
P[atomicallyWithIO M F]; Θ → P[return P]; Θ̂

(ATHROW2)

Figure 2.5: I/O transitions with finalizers

19

2.5.1 Nesting
The attentive reader might have noticed that in the extended semantics given above the
following term is perfectly valid:

atomicallyWithIO M1 (atomicallyWithIO M2 F)

As I have discussed in Section 2.2, this kind of nesting is actually pretty useful in
practice. However, it does open up the possibility of deadlocks if the term M2 writes
to any of the memory locations referenced by M1. Such behavior should be explicitly
prohibited in the semantics, which need to be extended a bit further to do so (Figures 2.6
and 2.7).

Firstly, both I/O and STM transitions will carry around a new piece of state Σ,
which is a set of labeled memory references:

Σ ::= r × (r | w)

It is a record of all memory operations done by a transaction. The labels r and w denote
whether a particular memory location was read from or written to, respectively. As a
shorthand notation, we define Σw = {r | (r, w) ∈ Σ}, i.e. the set of references in Σ that
have been used in a write operation. Σr and Σrw are defined analogously. We also define
Σ|∆ = {(r, w) ∈ Σ | r ∈ dom(∆)}, which restricts Σ to those labelled references that
correspond to the allocations recorded in ∆.

Secondly, the STM transition rules (READ), (WRITE) and (NEW) modify Σ by
recording their respective operations. All other rules treat Σ in very much the same way
as the heap.

Finally, the purpose of Σ becomes clear on the I/O-level, where rules (ARET) and
(ATHROW2) include a new condition above the line: the set of memory locations read
from or written to during the STM transition (Σ′

rw) and the set of memory locations
written to during the finalizing I/O transition (Σ̂w) must be entirely distinct. There must
not be a single shared reference between the two phases — except for references that the
finalizer has only read. This is exactly the restriction necessary to avoid deadlocks.

20

STM transitions M ; Θ, ∆, Σ ⇒ N ; Θ′, ∆′, Σ′

S[readTVar r]; Θ, ∆, Σ ⇒ S[return Θ(r)]; Θ, ∆, (Σ ∪ {(r, r)}) if r ∈ dom(Θ) (READ)
S[writeTVar r M]; Θ, ∆, Σ ⇒ S[return ()]; Θ[r 7→M], ∆, (Σ ∪ {(r, w)}) if r ∈ dom(Θ) (WRITE)

S[newTVar M]; Θ, ∆, Σ ⇒ S[return r]; Θ[r 7→M], ∆[r 7→M], (Σ ∪ {(r, w)}) r /∈ dom(Θ) (NEW)

M → N
S[M]; Θ, ∆, Σ ⇒ S[N]; Θ, ∆, Σ

(AADMIN)

M1; Θ, ∆, Σ ∗=⇒ return N ; Θ′, ∆′, Σ′

S[M1 `orElse` M2]; Θ, ∆, Σ ⇒ S[return N]; Θ′, ∆′, Σ′ (OR1)

M1; Θ, ∆, Σ ∗=⇒ throw N ; Θ′, ∆′, Σ′

S[M1 orElse M2]; Θ, ∆, Σ ⇒ S[throw N]; Θ′, ∆′, Σ′ (OR2)

M1; Θ, ∆, Σ ∗=⇒ retry; Θ′, ∆′, Σ′

S[M1 orElse M2]; Θ, ∆, Σ ⇒ S[M2]; Θ, ∆, Σ
(OR3)

M ; Θ, {}, Σ ∗=⇒ return P ; Θ′, ∆′, Σ′

S[catch M N]; Θ, ∆, Σ ⇒ S[return P]; Θ′, (∆ ∪∆′), Σ′ (XSTM1)

M ; Θ, {}, Σ ∗=⇒ throw P ; Θ′, ∆′, Σ′

S[catch M N]; Θ, ∆, Σ ⇒ S[N P]; (Θ ∪∆′), (∆ ∪∆′), (Σ ∪ Σ′|∆′)
(XSTM2)

M ; Θ, {}, Σ ∗=⇒ retry; Θ′, ∆′, Σ′

S[catch M N]; Θ, ∆, Σ ⇒ S[retry]; Θ, ∆, Σ
(XSTM3)

Figure 2.6: STM transitions with finalizers and nesting checks

21

I/O transitions P ; Θ, Σ a−→ Q; Θ′, Σ′

P[putChar c]; Θ, Σ !c−→ P[return ()]; Θ, Σ (PUTC)
P[getChar]; Θ, Σ ?c−→ P[return c]; Θ, Σ (GETC)

P[forkIO M]; Θ, Σ → (P[return t] | Mt); Θ, Σ t /∈ P, Θ, Σ, M (FORK)
P[catch (return M) N]; Θ, Σ → P[return M]; Θ, Σ (CATCH1)
P[catch (throw P) N]; Θ, Σ → P[N P]; Θ, Σ (CATCH2)

M → N
P[M]; Θ, Σ → P[N]; Θ, Σ

(ADMIN)

M ; Θ, {}, {} ∗=⇒ return N ; Θ′, ∆′, Σ′

F N ; (Θ ∪∆′), {} ∗−→ return P ; Θ̂, Σ̂ (Σ′
rw ∩ Σ̂w) = ∅

P[atomicallyWithIO M F]; Θ, Σ → P[return P]; (Θ′ ∪ Θ̂), (Σ ∪ Σ′ ∪ Σ̂)
(ARET)

M ; Θ, {}, {} ∗=⇒ throw N ; Θ′, ∆′, Σ′

P[atomicallyWithIO M F]; Θ, Σ → P[throw N]; (Θ ∪∆′), (Σ ∪ Σ′|∆′)
(ATHROW1)

M ; Θ, {}, {} ∗=⇒ return N ; Θ′, ∆′, Σ′

F N ; (Θ ∪∆′), {} ∗−→ throw P ; Θ̂, Σ̂ (Σ′
rw ∩ Σ̂w) = ∅

P[atomicallyWithIO M F]; Θ, Σ → P[throw P]; Θ̂, (Σ ∪ Σ′|∆′ ∪ Σ̂)
(ATHROW2)

Figure 2.7: I/O transitions with finalizers and nesting checks

22

2.5.2 Adding invariants
GHC’s STM implementation includes the alwaysSucceeds primitive, used to introduce
dynamically-checked data invariants. It was first described in Harris and Peyton Jones
(2006) (where it was called check). I have ignored invariants thus far since they increase
the overall complexity of the semantics and are mostly orthogonal to finalizers. It is now
time to introduce them. Figures 2.8 to 2.10 constitute the complete and final syntax
and semantics of STM Haskell with finalizers.

Firstly, we add the set of invariants Ω as another piece of state associated with all
I/O and STM transitions. It is usually treated like Σ or the heap.

Secondly, the new STM transition rules (CHECK1) and (CHECK2) describe the
alwaysSucceeds primitive. If the invariant holds at the point it is proposed, (CHECK1)
adds it to Ω and discards its evaluation effects. (CHECK2) applies when the invariant
throws an exception. As usual, the exception is propagated, the invariant discarded and
only allocation effects are retained.

Finally, the biggest changes happen on the I/O level: (ARET) becomes (ARET1);
along with (ATHROW2) it has a new premise that evaluates the invariants in place at
the end of the STM transition. When evaluating each invariant, its return value and all
its heap effects are discarded. Only if all invariants evaluate to return terms can we run
the finalizer of atomicallyWithIO. Note that it is required that the write set of the I/O
transition (Σ̂w) is distinct from all of the memory locations referenced by the invariants
(∪ Σ′

i).
If any of the invariants throws an exception, the new rule (ARET2) applies. Similar

to (ATHROW1), the exception is propagated to the I/O level and only allocation effects
are preserved (including the allocation effects ∆′

i of the broken invariant Mi). The I/O
action is not executed in this case.

23

x, y ∈ V ariable
r, t ∈ Name

c ∈ Char

Value V ::= r | c | \ x-> M
| return M | M >>= N
| putChar c | getChar
| throw M | catch M N
| retry | M `orElse` N
| newTVar
| readTVar r | writeTVar r M
| forkIO M
| alwaysSucceeds M
| atomicallyWithIO M X

Term M, N ::= x | V | M N | . . .

Thread soup P, Q ::= Mt | (P | Q)
Heap Θ ::= r ↪→M

Allocations ∆ ::= r ↪→M
Touched references Σ ::= r × (r | w)

Invariants Ω ::= {M}

Evaluation contexts S ::= [·] | S >>= M
P ::= St | (P | P) | (P | P)

Action a ::= !c | ?c | ϵ

Figure 2.8: The syntax of STM Haskell with invariants, finalizers and nesting checks

24

I/O transitions P ; Θ, Σ, Ω a−→ Q; Θ′, Σ′, Ω′

P[putChar c]; Θ, Σ, Ω !c−→ P[return ()]; Θ, Σ, Ω (PUTC)
P[getChar]; Θ, Σ, Ω ?c−→ P[return c]; Θ, Σ, Ω (GETC)

P[forkIO M]; Θ, Σ, Ω → (P[return t] | Mt); Θ, Σ, Ω t /∈ P, Θ, Σ, Ω, M (FORK)
P[catch (return M) N]; Θ, Σ, Ω → P[return M]; Θ, Σ, Ω (CATCH1)
P[catch (throw P) N]; Θ, Σ, Ω → P[N P]; Θ, Σ, Ω (CATCH2)

M → N
P[M]; Θ, Σ, Ω → P[N]; Θ, Σ, Ω

(ADMIN)

M ; Θ, {}, {}, Ω ∗=⇒ return N ; Θ′, ∆′, Σ′, Ω′

∀Mi ∈ Ω′ : (Mi; Θ′, {}, {}, {} ∗=⇒ return Ni; Θ′
i, ∆′

i, Σ′
i, Ω′

i)
F N ; (Θ ∪∆′), {}, Ω ∗−→ return P ; Θ̂, Σ̂, Ω̂ (

∪
Σ′

i ∪ Σ′)rw ∩ Σ̂w = ∅
P[atomicallyWithIO M F]; Θ, Σ, Ω → P[return P]; (Θ′ ∪ Θ̂), (Σ ∪ Σ′ ∪ Σ̂), (Ω′ ∪ Ω̂)

(ARET1)

M ; Θ, {}, {}, Ω ∗=⇒ return N ; Θ′, ∆′, Σ′, Ω′

∀Mi ∈ Ω′ : (Mi; Θ′, {}, {}, {} ∗=⇒ return Ni; Θ′
i, ∆′

i, Σ′
i, Ω′

i)
F N ; (Θ ∪∆′), {}, Ω ∗−→ throw P ; Θ̂, Σ̂, Ω̂ (

∪
Σ′

i ∪ Σ′)rw ∩ Σ̂w = ∅
P[atomicallyWithIO M F]; Θ, Σ, Ω → P[throw P]; Θ̂, (Σ ∪ Σ′|∆′ ∪ Σ̂), Ω̂

(ATHROW2)

M ; Θ, {}, {}, Ω ∗=⇒ return N ; Θ′, ∆′, Σ′, Ω′

∃Mi ∈ Ω′ : (Mi; Θ′, {}, {}, {} ∗=⇒ throw Ni; Θ′
i, ∆′

i, Σ′
i, Ω′

i)
P[atomicallyWithIO M F]; Θ, Σ, Ω → P[throw Ni]; (Θ ∪∆′ ∪∆′

i), (Σ ∪ Σ′|∆′ ∪ Σ′
i|∆′

i
), Ω

(ARET2)

M ; Θ, {}, {}, Ω ∗=⇒ throw N ; Θ′, ∆′, Σ′, Ω′

P[atomicallyWithIO M F]; Θ, Σ, Ω → P[throw N]; (Θ ∪∆′), (Σ ∪ Σ′|∆′), Ω
(ATHROW1)

Figure 2.9: I/O transitions with invariants, finalizers and nesting checks

25

STM transitions M ; Θ, ∆, Σ, Ω ⇒ N ; Θ′, ∆′, Σ′, Ω′

S[readTVar r]; Θ, ∆, Σ, Ω ⇒ S[return Θ(r)]; Θ, ∆, (Σ ∪ {(r, r)}), Ω if r ∈ dom(Θ) (READ)
S[writeTVar r M]; Θ, ∆, Σ, Ω ⇒ S[return ()]; Θ[r 7→M], ∆, (Σ ∪ {(r, w)}), Ω if r ∈ dom(Θ) (WRITE)

S[newTVar M]; Θ, ∆, Σ, Ω ⇒ S[return r]; Θ[r 7→M], ∆[r 7→M], (Σ ∪ {(r, w)}), Ω r /∈ dom(Θ) (NEW)

M → N
S[M]; Θ, ∆, Σ, Ω ⇒ S[N]; Θ, ∆, Σ, Ω

(AADMIN)

M1; Θ, ∆, Σ, Ω ∗=⇒ return N ; Θ′, ∆′, Σ′, Ω′

S[M1 `orElse` M2]; Θ, ∆, Σ, Ω ⇒ S[return N]; Θ′, ∆′, Σ′, Ω′ (OR1)

M1; Θ, ∆, Σ, Ω ∗=⇒ throw N ; Θ′, ∆′, Σ′, Ω′

S[M1 `orElse` M2]; Θ, ∆, Σ, Ω ⇒ S[throw N]; Θ′, ∆′, Σ′, Ω′ (OR2)

M1; Θ, ∆, Σ, Ω ∗=⇒ retry; Θ′, ∆′, Σ′, Ω′

S[M1 `orElse` M2]; Θ, ∆, Σ, Ω ⇒ S[M2]; Θ, ∆, Σ, Ω
(OR3)

M ; Θ, {}, Σ, Ω ∗=⇒ return P ; Θ′, ∆′, Σ′, Ω′

S[catch M N]; Θ, ∆, Σ, Ω ⇒ S[return P]; Θ′, (∆ ∪∆′), Σ′, Ω′ (XSTM1)

M ; Θ, {}, Σ, Ω ∗=⇒ throw P ; Θ′, ∆′, Σ′, Ω′

S[catch M N]; Θ, ∆, Σ, Ω ⇒ S[N P]; (Θ ∪∆′), (∆ ∪∆′), (Σ ∪ Σ′|∆′), Ω
(XSTM2)

M ; Θ, {}, Σ, Ω ∗=⇒ retry; Θ′, ∆′, Σ′, Ω′

S[catch M N]; Θ, ∆, Σ, Ω ⇒ S[retry]; Θ, ∆, Σ, Ω
(XSTM3)

M ; Θ, {}, Σ, Ω ∗=⇒ return N ; Θ′, ∆′, Σ′, Ω′

S[alwaysSucceeds M]; Θ, ∆, Σ, Ω ⇒ S[return ()]; Θ, ∆, Σ, (Ω ∪ {M})
(CHECK1)

M ; Θ, {}, Σ, Ω ∗=⇒ throw N ; Θ′, ∆′, Σ′, Ω′

S[alwaysSucceeds M]; Θ, ∆, Σ, Ω ⇒ S[throw N]; (Θ ∪∆′), (∆ ∪∆′), (Σ ∪ Σ′|∆′), Ω
(CHECK2)

Figure 2.10: STM transitions with invariants, finalizers and nesting checks

26

2.6 Implementation
The changes necessary to add finalizers to GHC’s STM implementation are surprisingly
few. Before describing them I will once again first give a brief overview of the status quo.
To avoid getting bogged down in minutiae, my description of the existing implementation
will be a careful simplification, focusing only on the relevant parts of the system. The
interested reader is referred to the STM Commentary (Yates 2013) for a more thorough
description, and to the GHC source code itself for all the gory details.4 A fork of
GHC containing the changes described in this section is available at http://github.com/
mcschroeder/ghc.

2.6.1 Original STM interface
When evaluating the atomically function, the runtime system pushes an ATOMICALLY_FRAME
onto the execution stack of the current thread. It then calls stmStartTransaction to
initialize a new thread-local transactional record (TRec). During the transaction, all read
and write operations are recorded in the TRec. Every TVar accessed by the transaction
has an entry in the record. Each entry contains a reference to the value of the TVar at
the start of the transaction (expected_value) and a reference to the new value the TVar
will have when the transaction commits (new_value). If a TVar has only been read during
a transaction, these two values will be identical. The TVars themselves are not modified
until the transaction commits.

When execution returns to the ATOMICALLY_FRAME, the commit is initiated by calling
stmCommitTransaction. First, the TRec is validated by checking if the expected_value of
each entry is pointer-equal to the current_value field of the corresponding TVar, i.e. if
the TVar has changed in between the transaction starting and committing. If everything
is as expected, the TVar is locked by setting current_value to point to the committing
TRec. If there is a mismatch, i.e. the TVar was modified by someone else, the TRec is
discarded and the transaction restarted. When validation is successful for the whole
TRec, the TVars are one by one updated by setting their current_value to the new_value
of the corresponding TRec entry, which also unlocks them again.

Because all TVars are locked during validation and each one is only unlocked after it
has been updated, the whole commit happens atomically with respect to other transac-
tions. Any other transaction trying to commit at the same time will fail its validation.
A transaction trying to read a locked TVar will briefly block, but since TVars are only
ever locked for very short periods of time, this is not a problem.

2.6.2 Adding atomicallyWithIO

The finalizer given to atomicallyWithIO should be executed after it is guaranteed that
the transaction can no longer abort due to conflicts with other transactions, but before
the transaction’s memory effects are made visible. This is only possible at one mo-

4http://git.haskell.org/ghc.git

27

http://github.com/mcschroeder/ghc
http://github.com/mcschroeder/ghc
http://git.haskell.org/ghc.git

// Basic transaction execution
TRec *stmStartTransaction();
Closure *stmReadTVar(TRec *trec, TVar *tvar);
void stmWriteTVar(TRec *trec, TVar *tvar, Closure *new_value);

// Transaction commit operations
Bool stmPrepareToCommitTransaction(TRec *trec);
void stmCommitTransaction(TRec *trec);

// Blocking operations
Bool stmWait(TRec *trec);
Bool stmReWait(TRec *trec);

// Transactional variable
struct TVar {
Closure *current_value;
TRec *frozen_by;

}

// Transactional record entry
struct TRecEntry {
TVar *tvar;
Closure *expected_value;
Closure *new_value
TRecEntry *next_entry;

}

// Transactional record
struct TRec {
TRec *enclosing_trec;
TRecEntry *next_entry;

}

Figure 2.11: STM runtime interface (simplified), extended to support finalizers

28

ment: during stmCommitTransaction, between the successful validation of the TRec and
the updating of the TVars, while all the TVars are still locked.

To achieve this, the validation part of stmCommitTransaction has been split off into the
new function stmPrepareToCommitTransaction. Committing is now a three-part sequence:
first, stmPrepareToCommitTransaction is called to validate the transactions; if successful,
a new ATOMICALLY_FRAME is pushed onto the stack and execution jumps to the finalizer
code; when the finalizer is done and execution has returned to the ATOMICALLY_FRAME,
stmCommitTransaction is called to finish the commit and update the TVars.

There is one problem: if the TVars are locked while the finalizer is running, then any
transaction attempting to access any of those locked TVars will immediately block until
the finalizer is finished. This is obviously bad for performance, especially considering
that the blocking occurs even when both transactions are read-only. Giving up on
read-parallelism is clearly unacceptable. But not locking the TVars while the finalizer is
running is also not possible: the transaction could then unknowingly become invalidated
by the actions of another transaction and still commit, resulting in an inconsistent state.

The solution: we freeze the TVars during finalization. This puts them into a kind of
in-between state, where they can still be read by other transactions, but any transaction
that attempts to commit an update to a frozen TVar will block until the TVar is unfrozen
again. The new TVar field frozen_by is set during stmPrepareToCommitTransaction, after
all TVars have been successfully validated, and points to the finalizing TRec; frozen_by
is cleared again during stmCommitTransaction. Although the TVars need to be locked
briefly when modifying their frozen_by fields (or indeed any other of their fields), they
no longer need to be locked for the whole duration of the finalizer.

Unfortunately, it is necessary to lock all TVars that are involved in a transaction,
if the transaction does indeed have a finalizer. Usually a read-phase is used, meaning
TVars that are only read but not updated within the atomic block do not get locked at
all, not even briefly. This is merely a performance optimization. It would be possible
to do it in the presence of finalizers, but it complicates the implementation, since the
frozen_by field is protected by the TVar lock. Note that this read-phase is also disabled
in the original implementation whenever a transaction touches an invariant, for the very
same reason.

What exactly happens when a transaction tries to commit an update but hits upon
a frozen TVar? The transaction could simply restart, like it does whenever the cur-
rent_value of a TVar changes behind its back. However, if the TVar is frozen, that means
it is involved in a potentially long-running finalizer, so it could still be frozen when it
is time to commit again. Since the transaction can never make progress as long as the
TVar is frozen, the only logical solution is to wait until the state of the TVar has actually
changed.5 This is similar to what happens when calling the blocking operator retry. In
fact, we can reuse a lot of retry’s runtime machinery: if stmPrepareToCommitTransaction

5Additionally, there is an issue with GHC’s optimizer being too eager when removing yield points.
The transaction would just restart over and over again, denying the thread running the finalizer the
chance to actually complete. This is a long-standing problem in GHC. See http://ghc.haskell.org/
trac/ghc/ticket/367.

29

http://ghc.haskell.org/trac/ghc/ticket/367
http://ghc.haskell.org/trac/ghc/ticket/367

discovers that some of the transaction’s TVars are frozen, it calls stmWait to put the TRec
on the TVars’ watch queues before putting the thread to sleep. Being on the TVars’ watch
queues means that whenever one of those TVars is updated in a commit, the waiting TRec
is woken up. When this happens, stmReWait is called to validate the TRec again to see if
it should continue waiting or if it makes sense now to restart the transaction or even to
commit it right away.

2.6.3 Nesting
The original STM code was written under the assumption that nested transactions are
impossible. To ensure safety, any attempts to bypass the type system are caught at
run-time. For example, making calls of the following form will result in an error:

atomically (unsafeIOToSTM (atomically...))

However, the system does implicitly support two other kinds of nesting: (1) the orElse
operator begins a new TRec for each of its branches; if a branch completes successfully
(i.e. does not retry) the TRec is merged upwards into the enclosing record; (2) invariants
introduced by alwaysSucceeds are checked at commit time, where a new nested transac-
tion is created for each invariant and completely discarded once the check is over.

The form of nesting made possible by atomicallyWithIO, viz. beginning a new trans-
action within the finalizer of another transaction, is similar in execution to these two,
except that we want to neither merge nor discard the nested TRec, but simply commit
it as-is and then return to the old transaction. The only difference between a regular
atomic block and an atomic block begun inside a finalizer is that in the latter case the
thread has a dormant TRec it returns to once the transaction inside the finalizer has
finished. Supporting this is pretty easy, as the existing infrastructure for nested TRecs,
mainly the enclosing_trec field, can be reused. Supporting nested transactions basically
amounts to loosening some assertions about what constitutes an outermost transaction
in a chain of TRecs: previously, the outermost transaction was indicated by an empty
enclosing_trec field, while now it can also be a transaction whose enclosing_trec is
running a finalizer. Everything else works exactly as it did before.

What happens when the nested transactions share variables? The inner transaction
just reading from a TVar is never a problem. It simply sees the current_value of the TVar
in memory. Note that since the outer transaction has not yet committed, any updates
it might have made to this TVar are still only in its TRec. They are not yet globally
visible, including within the transaction’s own finalizer. This matches the semantics.
As does the fact that an inner transaction cannot write to a shared TVar. If it tries to,
it will block during commit, since the TVar has been frozen by the outer transaction.
Meanwhile, the outer transaction is waiting for the inner transaction to finish. The
runtime system immediately detects this deadlock and throws an exception, gracefully
aborting the whole transaction.

30

CHAPTER 3
Transactional Tries

The fundamental data type of STM is the transactional variable. A TVar stores arbitrary
data, to be accessed and modified in a thread-safe manner. For example, I might define
a bank account as

type Euro = Int
type Account = TVar Euro

and then use a function like

transfer :: Account→ Account→ Euro→ STM ()

to safely — in the transactional sense — move money between accounts.
But where do those accounts come from? If I am a bank, how do I represent the

whole collection of accounts I manage, in a way that is transactionally safe? The obvious
solution, and a common pattern, is to simply use an existing container type and put that
type into a TVar:

type IBAN = String
type Bank = TVar (Map IBAN Account)

Since looking up an account from the Map involves a readTVar operation, the Map is
entangled with the transaction, and I can be sure that when transferring money between
accounts, both accounts actually exist in the bank at the time when the transaction
commits.

The drawback of this pattern of simply wrapping a Map inside a TVar is that when
adding or removing elements of the Map, one has to replace the Map inside the TVar
wholesale. Thus all concurrently running transactions that have accessed the Map be-
come invalid and will have to restart once they try to commit. Depending on the exact
access patterns, this can be a serious cause of contention. For example, one benchmark

31

running on a 16-core machine, with 16 threads each trying to commit a slice out of
200 000 randomly generated transactions, resulted in over 1.3 million retries.1 That is
some serious overhead!

The underlying problem is that the whole Map is made transactional, when we only
ever care about the subset of the Map that is relevant to the current transaction. If
transaction A updates an element with key k1 and transaction B deletes an element
with key k2, then those two transactions only conflict if k1 = k2; if k1 and k2 are
different, then there is no reason for either of the transactions to wait for the other one.
But the Map does not know it is part of a transaction, and the TVar does not know nor
care about the structure of its contents. And so the transactional net is cast too wide.

The solution is to not simply put a Map, or any other ready-made container type, into
a TVar, but to design data structures specifically tailored to the needs of transactional
concurrency. In this chapter, I present one such data structure, the transactional trie,
based on the concurrent trie of Prokopec, Bagwell, and Odersky (2011). I will describe
its design, show major parts of its implementation in Haskell and discuss the trade-offs
that have to be made in the transactional setting. I will then evaluate it against similar
STM-specialized data structures.

The finalizers of Chapter 2 were a macro-level approach to add side-effects to STM,
connecting whole transactions with potentially large I/O actions, tailored to the use
case of serializing data. The transactional trie incorporates side-effects on the micro-
level. It exposes a transactionally safe interface, while internally circumventing some
transactional safety measures in a controlled and manually verified way.

3.1 Background
The transactional trie is based on the concurrent trie of Prokopec, Bagwell, and Odersky
(2011), which is a non-blocking concurrent version of the hash array mapped trie first
described by Bagwell (2001).

A hash array mapped trie is a tree whose leaves store key-value bindings and whose
nodes are implemented as arrays. Each array has 2k elements. To look up a key, you
take the initial k bits of the key’s hash as an index into the root array. If the element at
that index is another array node, you continue by using the next k bits of the hash as
an index into that second array. If that element is another array, you again use the next
k bits of the hash, and so on. Generally speaking, to index into an array node at level
l, you use the k bits of the hash beginning at position k ∗ l. This procedure is repeated
until either a leaf node is found or one of the array nodes does not have an entry at the
particular index, in which case the key is not yet present in the trie. The expected depth
of the trie is O(log2k(n)), which means operations have a nice worst-case logarithmic
performance.

Most of the array nodes would only be sparsely populated. To not waste space, the
arrays are actually used in conjunction with a bitmap of length 2k that encodes which

1A more detailed breakdown of this benchmark can be found in Section 3.4.

32

positions in the array are actually filled. If a bit is set in the bitmap, then the (logical)
array contains an element at the corresponding index. The actual array only has a size
equal to the bit count of the bitmap, and after obtaining a (logical) array index i in the
manner described above, it has to be converted to an index into the sparse array via
the formula #((i− 1)∧ bmp), where # is a function that counts the number of bits and
bmp is the array’s bitmap. To ensure that the bitmap can be efficiently represented, k
is usually chosen so that 2k equals the size of the native machine word, e.g. on 64-bit
systems k = 6.

The concurrent trie extends the hash trie by adding indirection nodes above every
array node. An indirection node simply points to the array node underneath it. In-
direction nodes have the property that they stay in the trie even if the nodes above
or below them change. When inserting an element into the trie, instead of directly
modifying an array node, an updated copy of the array node is created and an atomic
compare-and-swap operation on the indirection node is used to switch out the old array
node for the new one. If the compare-and-swap operation fails, meaning another thread
has already modified the array while we were not looking, the operation is retried from
the beginning. This simple scheme, where indirection nodes act as barriers for concur-
rent modification, ensures that there are no lost updates or race conditions of any kind,
while keeping all operations completely lock-free. A more thorough discussion, including
proofs of linearizability and lock-freedom, can be found in the paper by Prokopec et al.
(2011). A Haskell implementation of the concurrent trie, as a mutable data structure in
IO, is also available (Schröder 2014).

The transactional trie is an attempt to lift the concurrent trie into an STM context.
The idea is to use the lock-freedom of the concurrent trie to make a non-contentious
data structure for STM. This is not entirely straightforward, as there is a natural ten-
sion between the atomic compare-and-swap operations of the concurrent trie, which are
pessimistic and require execution inside the IO monad, and optimistic transactions as
implemented by STM. While it is possible to simulate compare-and-swap using TVars
and retry,2 this would entangle the indirection nodes with the rest of the transaction,
which is exactly the opposite of what we want. To keep the non-blocking nature of the
concurrent trie, the indirection nodes need to be kept independent of the transaction
as a whole, which should only hinge on the actual values stored in the trie’s leaves.
If two transactions were to cross paths at some indirection node, but otherwise con-
cern independent elements of the trie, then neither transaction should have to retry or
block. Side-effecting compare-and-swap operations that run within but independently of

2Like this, for example:

stmCAS :: TVar a → a → a → STM ()
stmCAS var old new = do

cur ← readTVar var
if (cur ≡ old)

then writeTVar var new
else retry

33

a transaction are the only way to achieve this. Alas, the type system, with good reason,
will not just allow us to mix IO and STM actions, so we have to circumvent it from time
to time using unsafeIOToSTM. We will need to justify every single use of unsafeIOToSTM
and ensure it does not lead to violations of correctness. Still, bypassing the type system
is usually a bad sign, and indeed we will see that correctness can only be preserved at
the cost of memory efficiency, at least in an STM implementation without finalizers.

3.2 Implementation
The version of the transactional trie discussed in this chapter is available on Hackage
at http://hackage.haskell.org/package/ttrie-0.1.2. The full source code can also be
found at http://github.com/mcschroeder/ttrie.

The module Control.Concurrent.STM.Map3 exports the transactional trie under the
following interface:

data Map k v
empty :: STM (Map k v)
insert :: (Eq k, Hashable k)⇒ k → v → Map k v → STM ()
lookup :: (Eq k, Hashable k)⇒ k → Map k v → STM (Maybe v)
delete :: (Eq k, Hashable k)⇒ k → Map k v → STM ()

Now let us implement it. As always, we begin with some types:4

newtype Map k v = Map (INode k v)
type INode k v = IORef (Node k v)
data Node k v = Array !(SparseArray (Branch k v))

| List ![Leaf k v]
data Branch k v = I !(INode k v)

| L !(Leaf k v)
data Leaf k v = Leaf !k !(TVar (Maybe v))

The transactional trie largely follows the construction of a concurrent trie:

• The INode is the indirection node described in the previous section and is simply
an IORef, which is a mutable variable in IO. To read and write IORefs atomically,
we will use some functions and types from the atomic-primops package (Newton
2014):

data Ticket a
readForCAS :: IORef a → Ticket a

3The name of the trie’s public data type is Map, instead of, say, TTrie. The more general name is in
keeping with other container libraries and serves to decouple the interface from the specific implemen-
tation based on concurrent tries.

4The ! operator is a strictness annotation.

34

http://hackage.haskell.org/package/ttrie-0.1.2
http://github.com/mcschroeder/ttrie
http://hackage.haskell.org/package/atomic-primops

peekTicket :: Ticket a → IO a
casIORef :: IORef a → Ticket a → a → IO (Bool, Ticket a)

The idea of the Ticket type is to encapsulate proof that a thread has observed a
specific value of an IORef. Due to compiler optimizations, it would not be safe to
just use pointer equality to compare values directly.

• A Node is either an Array of Branches or a List of Leafs. The List is used in case of
hash collisions. A couple of convenience functions help us manipulate such collision
lists:

listLookup :: Eq k ⇒ k → [Leaf k v]→ Maybe (TVar (Maybe v))
listDelete :: Eq k ⇒ k → [Leaf k v]→ [Leaf k v]

Their implementations are entirely standard.
The Array is actually a SparseArray, which abstracts away all the bit-fiddling nec-
essary for navigating the bit-mapped arrays underlying a hash array mapped trie.
Its interface is largely self-explanatory:

data SparseArray a
emptyArray :: SparseArray a
mkSingleton :: Level→ Hash→ a → SparseArray a
mkPair :: Level→ Hash→ a → a → Maybe (SparseArray a)
arrayLookup :: Level→ Hash→ SparseArray a → Maybe a
arrayInsert :: Level→ Hash→ a → SparseArray a → SparseArray a
arrayUpdate :: Level→ Hash→ a → SparseArray a → SparseArray a

I will not go into the implementation of SparseArray. It is fairly low-level and can
be found in the internal Data.SparseArray module of the ttrie package.
Some additional functions are used to manipulate Hashes and Levels. Again, they
are self-explanatory:

type Hash = Word
hash :: Hashable a ⇒ a → Hash
type Level = Int
down :: Level→ Level
up :: Level→ Level
lastLevel :: Level

• A Branch either adds another level to the trie by being an INode or it is simply a
single Leaf.

The one big difference to a concurrent trie lies in the definition of the Leaf. Basically,
a Leaf is a key-value mapping. It stores a key k and a value v. But the way it stores v
determines how the trie behaves in a transactional context. Let us build it step by step:

35

http://hackage.haskell.org/package/ttrie

1. Imagine if Leaf were defined exactly like in a concurrent trie:

data Leaf k v = Leaf !k v

Then an atomic compare-and-swap on an INode to insert a new Leaf would ob-
viously not be safe during an STM transaction: other transactions could see the
new value v before our transaction commits; and they could replace v by inserting
a new Leaf for the same key, resulting in our insert being lost.

2. We can eliminate lost inserts by wrapping the value in a TVar:

data Leaf k v = Leaf !k !(TVar v)

Now, instead of replacing the whole Leaf to update v, we can use writeTVar to only
modify the value part of the Leaf. If two transactions try to update the same Leaf,
then STM will detect the conflict and one of the transactions would have to retry.
Of course, if there does not yet exist a Leaf for a specific key, then a new Leaf
will still have to be inserted with a compare-and-swap. In this case it is again
possible for other transactions to read the TVar immediately after the swap, even
though our transaction has not yet committed and may still abort. This can
happen without conflict because the new Leaf contains a newly allocated TVar and
allocation effects are allowed to escape transactions by design (see Section 2.4).
Reading a newly allocated TVar will never cause a conflict.

3. To ensure proper isolation, the actual type of Leaf looks like this:

data Leaf k v = Leaf !k !(TVar (Maybe v))

By adding the Maybe, we can allocate new TVars with Nothing in them. A trans-
action can then insert a new Leaf containing Nothing using the compare-and-swap
operation. Other threads will still able to read the new TVar immediately after the
compare-and-swap, but all they will get is Nothing. The transaction, meanwhile,
can simply writeTVar (Just v) to safely insert the actual value into the Leaf’s TVar.
If another transaction also writes to the TVar and commits before us, then we have
a legitimate conflict on the value level, and our transaction will simply retry.

Now that we have the types that make up the trie’s internal structure, we can
implement its operations. We begin with the function to create an empty trie:

empty :: STM (Map k v)
empty = unsafeIOToSTM $ Map <$> newIORef (Array emptyArray)

It contains no surprises, although it has the first use of unsafeIOToSTM, which in this
case is clearly harmless.

For the rest of the operations, let us assume we have a function

36

getTVar :: (Eq k, Hashable k)⇒ k → Map k v → STM (TVar (Maybe v))

that either returns the TVar stored in the Leaf for a given key, or allocates a new TVar
for that key and inserts it appropriately into the trie. The TVar returned by getTVar k m
will always either contain Just v, where v is the value associated with the key k in the
trie m, or Nothing, if k is not actually present in m. Additionally, getTVar obeys the
following invariants:

Invariant 1: getTVar k1 m ≡ getTVar k2 m ⇐⇒ k1 ≡ k2

Invariant 2: getTVar itself does not read from nor write to any TVars.

Now we can define the trie’s operations as follows:

insert k v m = do var ← getTVar k m
writeTVar var (Just v)

lookup k m = do var ← getTVar k m
readTVar var

delete k m = do var ← getTVar k m
writeTVar var Nothing

The nice thing about defining the operations this way, is that correctness and non-
contentiousness follow directly from the invariants of getTVar. The first invariant ensures
correctness. If we get the same TVar every time we call getTVar with the same key, and
if that TVar is unique to that key, then STM will take care of the rest. And if, by the
second invariant, getTVar does not touch any transactional variables, then the only way
one of the operations can cause a conflict is if it actually operates at the same time on
the same TVar as another transaction. Unnecessary contention is therefore not possible.

All that is left to do is implementing getTVar. Essentially, getTVar is a combination
of the insert and lookup functions of the concurrent trie, just lifted into STM. It tries to
look up the TVar associated with a given key, and if that does not exist, allocates and
inserts a new TVar for that key. When inserting a new TVar, the structure of the trie
has to be changed to accommodate the new element.

Let us look at the code:

getTVar k (Map root) = go root 0
where

h = hash k

The actual work is done by the recursive helper function go. It begins at level 0 by
looking into the root indirection node. Note that throughout the iterations of go, the
hash h of the key is only computed once.

go inode level = do
ticket ← unsafeIOToSTM $ readForCAS inode

37

case peekTicket ticket of
Array a → case arrayLookup level h a of

Just (I inode2)→ go inode2 (down level)
Just (L leaf 2@(Leaf k2 var))
| k ≡ k2 → return var
| otherwise → cas inode ticket (growTrie level a (hash k2) leaf 2)

Nothing → cas inode ticket (insertLeaf level a)
List xs → case listLookup k xs of

Just var → return var
Nothing → cas inode ticket (return ◦ List ◦ (:xs))

The use of unsafeIOToSTM here is clearly safe — all we are doing is reading the value of
the indirection node. This does not have any side effects, so it does not matter if the
transaction aborts prematurely. If the transaction retries, the indirection node is just
read again — possibly resulting in a different value. It is also possible that the value of
the indirection node changes during the runtime of the rest of the function — but that
is precisely why we obtain a Ticket.

Depending on the contents of the indirection node, we either go deeper into the trie
with a recursive call of go; return the TVar associated with the key; or insert a new TVar
by using the cas function to swap out the old contents of the indirection node with an
updated version that somehow contains the new TVar.

The cas function is also part of the where clause of getTVar:

cas inode ticket f = do
var ← newTVar Nothing
node ← f (Leaf k var)
(ok,)← unsafeIOToSTM $ casIORef inode ticket node
if ok then return var

else go root 0

It implements a transactionally safe compare-and-swap procedure:

1. Allocate a new TVar containing Nothing.

2. Use the given function f to produce a node containing a Leaf with this TVar.

3. Use casIORef to compare-and-swap the old contents of the inode with the new
node.

4. If the compare-and-swap was successful, the new node is immediately visible to all
other threads. Return the TVar to the caller, who is now free to use writeTVar to
fill in the final value.

5. If the compare-and-swap failed, because some other thread has changed the inode
since the time we first read it, restart the operation — not with the STM retry,
which would restart the whole transaction, but simply by calling go root 0 again.

38

All that is remaining now are the functions given for f in the code of go. Given a
new Leaf, they are supposed to return a Node that somehow contains this new Leaf. In
the case of the overflow list, this is just a trivial anonymous function that prepends the
leaf into the List node. The insertLeaf function does pretty much the same, except for
Array nodes:

insertLeaf level a leaf = do
let a′ = arrayInsert level h (L leaf) a
return (Array a′)

In case of a key collision, things are a slightly more involved. The growTrie function
puts the colliding leaves into a new level of the trie, where they hopefully will not collide
anymore:

growTrie level a h2 leaf 2 leaf 1 = do
inode2 ← unsafeIOToSTM $ combineLeaves (down level) h leaf 1 h2 leaf 2
let a′ = arrayUpdate level h (I inode2) a
return (Array a′)

combineLeaves level h1 leaf 1 h2 leaf 2
| level ⩾ lastLevel = newIORef (List [leaf 1, leaf 2])
| otherwise =

case mkPair level h (L leaf 1) h2 (L leaf 2) of
Just pair → newIORef (Array pair)
Nothing→ do

inode ← combineLeaves (down level) h1 leaf 1 h2 leaf 2
let a = mkSingleton level h (I inode)
newIORef (Array a)

The use of casIORef here is once again harmless, as combineLeaves only uses IO to allocate
new IORefs. The mkPair function for making a two-element SparseArray returns a Maybe,
because it is possible that on a given level of the trie the two keys hash to the same array
index and so the leaves cannot both be put into a single array. In that case, another
new indirection node has to be introduced into the trie and the procedure repeated. If
at some point the last level has been reached, the leaves just go into an overflow List
node.

3.3 Memory efficiency
While the transactional trie successfully carries over the lock-freedom of the concurrent
trie and keeps the asymptotic performance of its operations, it does have to make a
couple of concessions regarding memory efficiency.

The first concession is that when looking up any key for the first time, the lookup
operation will actually grow the trie. This is a direct consequence of using getTVar to
implement the trie’s basic operations. If getTVar does not find the Leaf for a given key,

39

it allocates a new one and inserts it. One might wonder if it is possible to implement a
lookup function that does not rely on getTVar. The following attempt is pretty straight-
forward and appears to be correct at first glance — although you might already guess
from its name that something is not quite right:

phantomLookup :: (Eq k, Hashable k)⇒ k → Map k v → STM (Maybe v)
phantomLookup k (Map root) = go root 0

where
h = hash k
go inode level = do

node ← unsafeIOToSTM $ readIORef inode
case node of

Array a → case arrayLookup level h a of
Just (I inode2)→ go inode2 (down level)
Just (L (Leaf k2 var))
| k ≡ k2 → readTVar var
| otherwise → return Nothing

Nothing → return Nothing
List xs → case listLookup k xs of

Just var → readTVar var
Nothing → return Nothing

The problem with this simple implementation is that under certain circumstances it
allows for phantom reads. Consider the following pair of functions:

f = atomically $ do v1← phantomLookup k
v2← phantomLookup k
return (v1 ≡ v2)

g = atomically (insert k 23)

Due to STM’s isolation guarantees, one would reasonably expect that f always re-
turns True. However, sometimes f will return False when g is run between the two
phantomLookups in f . How is this possible? If you start out with an empty trie, then
the first phantomLookup in f obviously returns Nothing. And it does so without touching
any TVars, because there is no TVar for k at this point. Only when running g for the
first time, will a TVar for k be created. The transaction inside f will now happily read
from this TVar during the second phantomLookup and will not detect any inconsistencies,
because this is the first time it has seen the TVar. This problem does not only occur
on an empty trie, but any time we look up a key that has not previously been inserted.
The only remedy is to ensure that there is always a TVar for every key, even if it is filled
with Nothing, which is exactly what the implementation of lookup using getTVar does.

Granted, it seems as if these kinds of phantom lookups might not occur regularly in
practice, and even if they did, they would probably cause no great harm. The overhead
of always allocating a Leaf for every key that is ever looked up, on the other hand,

40

seems much more troublesome. However, phantomLookup exhibits exactly the kind of
seldom-occurring unexpected behavior that results in bugs that are incredibly hard to
find. And having a lookup function that grows the trie is really only an issue in two
cases:

1. when we expect the keys we look up to not be present a significant amount of
the time; then a transactional trie is probably really not the right data structure.
Although if one were to use phantomLookup instead of lookup, and if in this partic-
ular scenario phantom lookups are actually acceptable, then using a transactional
trie could still be feasible.

2. when a malicious actor purposefully wants to increase memory consumption, i.e.
a classic denial-of-service attack; then one can again counteract this by using
phantomLookup, limited to those places that are susceptible to attack. For ex-
ample, a login routine in a web application could first use phantomLookup to check
if the user actually exists, before continuing with the transaction. Here the phan-
tom lookup does not matter, because if the user does not exist the transaction is
aborted anyway.

Thus, it makes sense to have the behavior of lookup be the default and provide phantomLookup
for those select scenarios where it is actually an improvement.

The other trade-off the trie has to make regarding memory efficiency, is that the
delete operation does not actually remove Leafs or compact the trie again. It merely fills
a Leaf’s TVar with Nothing. This frees up the values associated with the keys, which
is the major part of a trie’s memory consumption, but it does not delete the keys or
compress the structure that has emerged in the trie, which might now be suboptimal
given the trie’s current utilization.

Again, for the common use case, this might not be a problem. Very often, we do not
want to actually delete certain data, but merely mark it as deleted; or maybe delete the
data, but mark the associated keys as having been previously in use in order to prevent
reusing them. Think of unique user IDs, for example. In such a scenario, the overhead
of the trie not actually deleting Leafs disappears. Still, there are of course cases where
we do want the trie to always be as compact a representation of its data as possible,
and there is in fact a way to achieve this: by using finalizers. What prevents us from
just removing Leafs from the trie during a transaction is that transactions might get
restarted or aborted. If we use the normal delete function during the transaction, which
essentially just marks a key as deleted (but by accessing the TVar ensures that there are
no conflicts with other transactions), we can then use an unsafeDelete function inside
the transaction’s finalizer to really remove the Leaf:

atomicallyWithIO (delete k m) (_→ unsafeDelete k m)

The finalizer ensures the atomicity of the otherwise unsafe operation.
To implement unsafeDelete properly and preserve lock-freedom, we have to slightly

alter the Node type by adding an additional kind of node: a Tomb node.

41

data Node k v = Array !(SparseArray (Branch k v))
| List ![Leaf k v]
| Tomb !(Leaf k v)

A Tomb node holds a single key. It comes into existence when unsafeDelete would result
in an Array node with only a single Leaf beneath it. A Tomb node is the last value
assigned to an INode. If any operation encounters an INode that points to a Tomb
node, it cannot modify the INode but rather must help compress the trie by merging the
tombed leaf into the parent INode before retrying the operation. The exact details of
unsafeDelete and the accompanying cleanup and compression procedures are very tricky,
but not especially interesting. They are described in great detail by Prokopec, Bronson,
et al. (2012) and are included in the final implementation of the transactional trie.

3.4 Evaluation
I empirically evaluated the transactional trie against similar data structures, measuring
contention, runtime performance and memory allocation. The benchmarks were run
on an Amazon EC2 C3 extra-large instance with Intel Xeon E5-2680 v2 (Ivy Bridge)
processors and a total of 16 physical cores. Under comparison were three hashing-based
container types: a transactional trie; a HashMap from the unordered-containers library
(Tibell and Yang 2014), wrapped inside a TVar; and the STM-specialized hash array
mapped trie from the stm-containers library (Volkov 2014b).

Each benchmark consists of a number of random STM transactions. The benchmarks
differ in the size and composition of these transactions. Each benchmark is run on every
container type, using the same random Text strings as keys each time. The benchmarks
are run multiple times, using an increasing number of threads. The transactions are split
evenly over the number of threads in use. The time it takes to complete all transactions
for a particular container is measured using the criterion and criterion-plus libraries
(O’Sullivan 2014; Volkov 2014a), which calculate the mean execution time over many
iterations. To measure contention, the transactions are run again using the stm-stats
library (Leuschner, Wehr, and Breitner 2011) to count how often the STM runtime
system has to restart transactions due to conflicts. Finally, the transactions are run once
more to measure the total amount of allocated memory, using GHCs built-in facilities
for collecting memory usage statistics. All benchmarks were compiled using GHC 7.8.3.
For more details about test data generation and the exact benchmark setup, see the
ttrie source distribution.

Single-operation transactions. The first four benchmarks (Figure 3.1) each perform
200 000 transactions, where each transaction is just a single operation: insert, update,
lookup or delete. The insertion benchmark starts out with an empty container, while
all other benchmarks operate on containers prefilled with 200 000 entries. An update
operation is simply an insert where the key is already present in the container.

42

http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion-plus
http://hackage.haskell.org/package/stm-stats
http://hackage.haskell.org/package/ttrie

8 ms
16 ms
31 ms
62 ms

125 ms
250 ms
500 ms

1 s

1 8 16 1 8 16 1 8 16 1 8 16

1
10

100
1 k

10 k
100 k

1 M

1 8 16 1 8 16 1 8 16 1 8 16

5 MB

125 MB
250 MB
500 MB

1 GB

1 8 16 1 8 16 1 8 16 1 8 16

200 000 transactions
1 operation per transaction

tim
e

insert update lookup delete

re
tr

ie
s

al
lo

ca
tio

n

unordered-containers
stm-containers

ttrie

Figure 3.1: Single-operation transactions

43

The simple TVar-wrapped HashMap from unordered-containers performs exception-
ally well for lookups. This is to be expected: the transactional overhead for reading a sin-
gle TVar is practically non-existent and the STM runtime system can perform read-only
transactions completely lock-free. The greater complexity of ttrie and stm-containers
results in a greater overhead; they perform up to 10 times slower, although they scale
pretty well with the number of threads; ttrie is about 30% faster than stm-containers.
Curiously, stm-containers exhibits some contention for this read-only operation.

Updates are similarly well-suited to the HashMap. Since the keys are already present
in the map, there are no structural changes necessary. The transactions are fast enough
so that even though there is a small amount of contention — as all transactions have to
go through a single TVar — the number of retries stays low enough to not matter. The
HashMap is roughly twice as fast as the ttrie, which is roughly twice as fast in this
scenario as the stm-containers map.

The story looks entirely different for the insert and delete operations. Here, the
TVar-wrapped HashMap does not scale at all. On the highest number of threads, it is
an order of magnitude slower than the next best contender. The reason is obvious: the
amount of contention is so high that the number of retries actually exceeds the number
of transactions, i.e. every transaction has to retry at least once; additional threads
are actually detrimental to performance. With 16 threads, each one performing only
12 500 transactions, the insert and delete benchmarks recorded over 1 million retries for
unordered-containers. The transactional trie, as expected, exhibits no contention at all.
It is not only much faster than unordered-containers, it is also twice as fast as stm-
containers during all delete benchmarks and about half of the insert benchmarks. The
total amount of memory allocated by unordered-containers also increases dramatically
with the number of threads, while ttrie and stm-containers both use a constant amount
of memory irrespective of the level of concurrency, with ttrie using somewhat less.

That the transactional trie is faster than unordered-containers during delete even
on a single thread, where there can be no contention, is explained by the transactional
trie not actually compressing itself after removing a value. This makes a deletion in the
trie just a special case of an update. In fact, as long as there are no legitimate conflicts
on the value level or interactions within a larger transaction, the update, lookup and
delete operations of the ttrie should always exhibit the same run-time performance.

Mixed transactions. For the second set of benchmarks (Figure 3.2), transactions are
no longer just a single operation, but composed of a mix of up to 5 operations. Using
transactions of varying sizes and compositions much closer reflects real-world usage. The
insert benchmark now consists of 70% inserts, with the remaining 30% evenly distributed
among updates, lookups and deletes. Likewise, the update benchmark now consists of
70% updates, the lookup benchmark of 70% lookups and the delete benchmark of 70%
deletes. The insert benchmark again starts out with an empty container, while the other
benchmarks operate on containers prefilled with 1 000 000 entries.

As expected, legitimate conflicts between transactions are now slightly more com-
mon, evidenced by the increased number of retries measured for the transactional trie,

44

http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/ttrie

125 ms

250 ms

500 ms

1 s

2 s

1 8 16 1 8 16 1 8 16 1 8 16

1
10

100
1 k

10 k
100 k

1 M

1 8 16 1 8 16 1 8 16 1 8 16

125 MB
250 MB
500 MB

1 GB
2 GB
4 GB

1 8 16 1 8 16 1 8 16 1 8 16

200 000 transactions
1–5 operations per transaction

tim
e

70% insert 70% update 70% lookup 70% delete

re
tr

ie
s

al
lo

ca
tio

n

unordered-containers
stm-containers

ttrie

Figure 3.2: Mixed transactions

45

but they still amount to less than a dozen in the worst case. Yet it should come as
no surprise that for unordered-containers and stm-containers the number of spurious
retries vastly overshadows the legitimate conflicts. In the worst case, the TVar-wrapped
HashMap has to retry more than 1.3 million times for 200 000 transactions to succeed.
By mixing in just 30% different operations and using slightly varying transaction sizes,
unordered-containers exhibits contention even in the predominantly update and lookup
scenarios. The run-time performance of unordered-containers begins to rapidly degrade
at 4 threads, which is when the number of retries first exceeds the number of transac-
tions.

The other results are largely the same as in the first set of benchmarks, just a
bit more pronounced. For example, ttrie and stm-containers now have a virtually
identical runtime performance for insert, while the lead ttrie had on stm-containers
during update, lookup and delete has become bigger.

Balanced transactions. The last benchmark (Figure 3.3) consists of a balanced mix
of 25% of each operation, on containers prefilled with 1 000 000 entries.

This kind of benchmark plays to the strengths of the transactional trie: here, ttrie is
2–4 times faster than stm-containers, allocating only a third of the memory; and 1.3–8.6
times faster than unordered-containers, allocating almost 10 times less memory.

46

http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/unordered-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/ttrie
http://hackage.haskell.org/package/stm-containers
http://hackage.haskell.org/package/unordered-containers

125 ms

250 ms

500 ms

1 s

2 s

1 2 4 6 8 10 12 14 16

1
10

100
1 k

10 k
100 k

1 M

1 2 4 6 8 10 12 14 16

250 MB

500 MB

1 GB

2 GB

1 2 4 6 8 10 12 14 16

200 000 transactions
1–5 operations per transaction

tim
e

25% of each operation
re

tr
ie

s
al

lo
ca

tio
n

unordered-containers
stm-containers

ttrie

Figure 3.3: Balanced transactions

47

CHAPTER 4
STM as a database language

As a qualitative demonstration of the effectiveness of both finalizers and transactional
tries, I will now use them to build a real application together with a reusable framework
for constructing lightweight databases.

This is partly a continuation of my previous work on the tx library (Schröder 2013),
which was the original motivation for finalizers. The goal of that library was to add a
thin persistence layer on top of STM. But without finalizers, this could not be done in
a reliable manner, for the reasons laid out in Section 2.1. Now, however, we can do it
right.

4.1 Example: a social network
As a running example, we will build a simple social networking site. The full application
includes a Haskell web server that exposes a RESTful API and a simple JavaScript client.
Here we will focus on the site’s back-end, i.e. its data types and business logic. All code
snippets in this chapter are taken from fully working programs. The complete sample
code is available at http://github.com/mcschroeder/social-example.

Our social network will start out with a modest set of features: users can post
messages to their timelines; users can follow other users; and each user has a personalized
feed, which interweaves her timeline with the timelines of all the people she follows.

Because we want to quickly arrive at a working prototype, we use STM for concur-
rency and postpone the question of durability until later. This way we can focus on
getting the types right for our business logic, without having to worry about interfacing
with an external database just now. This first version of the social network can be found
in the social0 folder of the sample code.

Speaking of types, here they are:

49

http://hackage.haskell.org/package/tx
http://github.com/mcschroeder/social-example

data SocialDB = SocialDB
{users :: Map UserName User
, posts :: Map PostId Post
}

type UserName = Text

data User = User
{name :: UserName
, timeline :: TVar [Post]
, following :: TVar (Set User)
, followers :: TVar (Set User)
}

newtype PostId = PostId Word64
deriving (Eq, Ord, Random, Show, Hashable)

data Post = Post
{postId :: PostId
, author :: User
, time :: UTCTime
, body :: Text
}

The whole of the network is contained in the SocialDB type. Users are identified by
their names and are represented by the User type. Each user keeps a list of the posts
on her own timeline and also keeps track of other users that she follows and that are
following her. Posts are identified by a globally unique PostId and are represented by
the Post type, which contains the body of the post as well as its author and the time it
was created.

Behind the Map type of the users and posts collections lies the transactional trie from
Chapter 3. This guarantees that there will be no contention when our millions of future
users all post something to our site at the same time.

Since the types contain transactional variables, computations on them must be done
in the STM monad. For example, this is how we compute a user’s feed:

feed :: User→ STM [Post]
feed user = do

myPosts ← readTVar (timeline user)
others ← Set.toList <$> readTVar (following user)
otherPosts ← concat <$> mapM (readTVar ◦ timeline) others
return $ sortBy (flip $ comparing time) (myPosts ++ otherPosts)

50

And this is how users can follow each other:

follow :: User→ User→ STM ()
follow user1 user2 = do

modifyTVar (following user1) (Set.insert user2)
modifyTVar (followers user2) (Set.insert user1)

By using STM, we can write high-level code and get atomicity for free. Additionally, we
can take advantage of some other nice STM features, like composable blocking:

waitForFeed :: User→ UTCTime→ STM [Post]
waitForFeed user lastSeen = do

posts ← takeWhile isNew <$> feed user
if null posts then retry else return posts

where
isNew post = diffUTCTime (time post) lastSeen > 0.1

The retry operator enables waitForFeed to block until there are new posts in a user’s
feed. Our server uses this function to effortlessly push updates to the client in real-time
via HTTP long polling (Loreto et al. 2011).

Creating new posts is also relatively straightforward:

createPost :: User→ Text→ SocialDB→ STM Post
createPost author body db = do

postId ← newUniquePostId db
time ← unsafeIOToSTM getCurrentTime
newPost postId author time body db

newUniquePostId :: SocialDB→ STM PostId
newUniquePostId db = do

postId ← unsafeIOToSTM randomIO
alreadyExists← Map.member postId (posts db)
check (¬ alreadyExists)
return postId

newPost :: PostId→ User→ Time→ Text→ SocialDB→ STM Post
newPost postId author time body db = do

let post = Post {. .}
modifyTVar (timeline author) (post:)
Map.insert postId post (posts db)
return post

In order to generate a random ID for the post and to get the current time, we have to
use unsafeIOToSTM to interleave I/O actions with the transaction. In these cases, this is

51

perfectly safe: we are either only reading from the outside world (getCurrentTime) or are
otherwise producing only harmless side effects (randomIO, which updates the internal
state of its random number generator). If the transaction aborts, no harm is done. If
the transaction retries, we simply get a new time and generate a new random ID, which
is just what we want.

We have now seen pretty much the whole back-end of the social network, apart from
createUser, which is not that different from createPost. Using STM, we managed to
arrive very quickly at a functional prototype. Of course, since we are using only STM,
all effects stay purely in memory. If the server is shut down, the data is gone. In the
next section, we will use finalizers to change that.

4.2 The TX monad
The idea is to use an STM finalizer to record state-changing operations in a write-ahead
log file. We do not serialize the data itself, but rather the operations on the data. We
record function calls that can later be replayed to restore the state of the system at
the time of the recording. A similar scheme has been implemented by the acid-state
library (Himmelstrup 2014), which uses a custom lock-based state container instead of
building on STM. The fact that acid-state is used by Hackage, the official Haskell
package repository, demonstrates the practicality of such an approach.

To facilitate the recording of operations, a thin layer on top of STM is introduced:
the TX monad. Here is the follow function from the previous section, rewritten in TX:

follow :: User→ User→ TX SocialDB ()
follow user1 user2 = do

record $ Follow (name user1) (name user2)
liftSTM $ do

modifyTVar (following user1) (Set.insert user2)
modifyTVar (followers user2) (Set.insert user1)

This demonstrates the two main tasks we do in TX: lifting functions from the underlying
STM monad using liftSTM and recording database operations using record. Note how
TX is parameterized by the type of database, in our case SocialDB.

An updated version of the social network can be found in the social1 folder of the
sample code. Below is createPost rewritten for TX. The getData function is used to
retrieve the database implicitly carried around by TX:

createPost :: User→ Text→ TX SocialDB Post
createPost author body = do

db ← getData
postId ← liftSTM $ newUniquePostId db
time ← unsafeIOToTX getCurrentTime
record $ NewPost postId (name author) time body
liftSTM $ newPost postId author time body db

52

http://hackage.haskell.org/package/acid-state
http://hackage.haskell.org/package/acid-state

Notice that the TX version of createPost is virtually identical to the pure STM version,
except for a few lifts and the call to record. The existing STM functions newPost and
newUniquePostId could be reused and did not have to be touched at all.

The implementation of TX itself is pretty simple. It is a strict state transformer1 on
top of STM, keeping a list of recorded operations, as well as allowing easy access to the
root database type:

newtype TX d a = TX (StateT (d, [Operation d]) STM a)
deriving (Functor, Applicative, Monad)

record :: Operation d → TX d ()
record op = TX $ modify $ λ(d, log)→ (d, op : log)
getData :: TX d d
getData = TX $ gets fst
liftSTM :: STM a → TX d a
liftSTM = TX ◦ lift

TX could be implemented in a more strongly typed fashion, using a combination reader/writer
monad to emphasize that the database reference d is constant and that the operation
log is strictly write-only. Alas, using StateT is much more efficient, in addition to being
more convenient, as writer transformers do not work in constant space.2

The argument to record is an Operation d, which is an associated type of the Database
class:

class Database d where
data Operation d
replay :: Operation d → TX d ()

Associated types (Chakravarty et al. 2005) are defined by concrete instances of the
class they are associated with. In our case, the Database instance of SocialDB defines
Operation SocialDB, denoting operations that can be replayed in the context of SocialDB.
The constructors of Operation SocialDB represent the functions that recorded them.
For example, the Follow and NewPost constructors represent the follow and newPost
functions:

instance Database SocialDB where
data Operation SocialDB = Follow UserName UserName

| NewPost PostId UserName UTCTime Text
| ...

1The transformers package (Gill and Paterson 2014) provides a variety of monad transformers.
2See https://mail.haskell.org/pipermail/libraries/2013-March/019528.html.

53

http://hackage.haskell.org/package/transformers
https://mail.haskell.org/pipermail/libraries/2013-March/019528.html

replay (Follow name1 name2) = do
user1 ← getUser name1
user2 ← getUser name2
user1 ‘follow‘ user2

replay (NewPost postId name time body) = do
db ← getData
author ← getUser name
liftSTM $ void $ newPost postId author time body db

So the follow function records the Follow type and replaying the Follow type causes the
follow function to be called again. Note that TVars and types that contain TVars are
not directly serializable. Therefore the Follow type contains only the names of the users.
During replay, the full User structure is fetched from the database.

Now, how is a TX computation actually performed and its effects serialized? The
TX equivalent to atomically is durably, and this is where finalizers finally come into play:

durably :: DatabaseHandle d → TX d a → IO a
durably h (TX m) = atomicallyWithIO action finalizer

where
action = runStateT m (database h, [])
finalizer (a, (, ops)) = serialize ops h >> return a

The durably function runs the state monad inside TX and performs the resulting STM
action using atomicallyWithIO, passing the logged operations to the finalizer, which se-
rializes them and returns the transaction’s final result. DatabaseHandle d is an opaque
type referring to a specific database and its on-disk representation. The application
programmer uses the function

openDatabase :: (Database d, SafeCopy (Operation d))
⇒ FilePath→ d → IO (DatabaseHandle d)

to acquire a database handle that can be shared freely among threads. Upon opening a
database, its in-memory representation d is initialized by replaying the stored operations
from the underlying log file.

Note the SafeCopy constraint on Operation d. It comes from the widely-used safecopy
library (Himmelstrup and Lessa 2014), which is a serialization library with support for
version control. By leveraging safecopy, TX supports schema migration right out of
the box. The ability to extend and change data types and business logic while keeping
compatibility with old database files is very important for any database system, and
maybe especially so for something as lightweight as TX, which naturally lends itself to
rapid prototyping. For a practical demonstration of this, look in the social2 directory
of the sample code. It contains a version of the social network that has some additional
features, such as allowing users to post messages directly to the timelines of other users
and adding the ability to “like” posts. Implementing these features necessitated non-
trivial changes to the core types, yet switching from an older version of the serialized
database is seamlessly possible.

54

http://hackage.haskell.org/package/safecopy
http://hackage.haskell.org/package/safecopy

4.3 Caveats
Due to the simplicity of the design and the nature of the underlying STM abstraction,
there are some drawbacks and limitations. They are not fundamental, but they indicate
that in order to achieve higher scalability (in terms of application complexity), a more
sophisticated interface might be needed.

Using exceptions to handle failure. In some of the code above we have used a
function getUser to retrieve a user from the database by name. But what happens if
there is no user for the given name? Usually, we want to make the possibility of failure
explicit in the types and so would expect getUser to have a type like

getUser :: UserName→ TX SocialDB (Maybe User)

However, consider the following scenario:

do eve ← newUser "Eve"
adam ← getUser "Adam"
case adam of

Just adam → eve ‘follow‘ adam
Nothing → return ()

If getUser returns Nothing, then even though the block returns without further action,
eve is still created when the transaction ultimately commits. Of course this particular
example is somewhat contrived, as we could easily rearrange the functions to postpone
the creation of eve until after we have established that adam exists. But you can imagine
that this may not always be possible and does not scale well.

The real problem is that there is no way to explicitly abort an STM transaction other
than throwing an exception. This is why getUser is actually implemented like this:

getUser :: UserName→ TX SocialDB User
getUser name = do

db ← getData
liftSTM $ do

user ← Map.lookup name (users db)
case user of

Just user → return user
Nothing → throwSTM (UserNotFound name)

In the majority of uses, the desired outcome of a function like getUser in case the
user is not found is to abort the transaction. There are certainly ways to avoid spooky
exceptions as much as possible, e.g. by adding an exception monad transformer layer to
TX (something like Control.Monad.Trans.Except from transformers). But in the end a
real exception would need to be thrown regardless, in order to signal to the STM runtime
that the transaction needs to be aborted. I have favored the simpler design and it seems
to work well in practice, as indicated by our example application.

55

http://hackage.haskell.org/package/transformers

Double replay. The record function gives us great flexibility in how and when to
record operations. But with great flexibility comes great responsibility: not only does
the programmer have to remember to actually record a specific operation, she must
be especially careful when composing functions that record something. Consider the
following situation:

f = record F >> g
g = record G

Running f first records F and then calls g and so also records G. Replaying this recording
will first replay F, which runs f which calls g, and then it will replay G, which calls g
again. We have now called g twice, even though it was only executed once during the
original run! This is unfortunate, because it means that to avoid such situations, the
user has to keep the call graph of recordable functions in mind, and there is no help
from the compiler.

This makes one wonder: why do we record on this semi-high level — that obviously
is not high enough to save us from such basic yet easily overlooked mistakes — instead
of just directly recording every primitive writeTVar operation? We may not be able to
serialize a TVar itself, but we can certainly serialize its contents. Could we not have a
function

durableWriteTVar :: Serializable a ⇒ TVar a → a → TX d ()

that automatically logs updates at the lowest level, removing the need for explicit calls
to record? Alas, this is not possible: during replay, there is no way to automatically
re-associate the recorded value with the TVar it originally belonged to. We always need
some kind of context to find the one place in our data structure that has the correct
TVar to put the value back into. By recording higher-level operations, this context is
automatically included.

56

CHAPTER 5
Conclusions & Perspectives

I have presented two new approaches of combining transactions with side-effects, with
the goal of adding durability and eliminating contention:

• STM Finalizers are a global, top-down approach of adding arbitrary I/O during
transactional commit. I have given a precise semantics of this extension to Haskell’s
STM system, as well as an implementation in the Glasgow Haskell Compiler. I
have given many examples of the usefulness of finalizers, and demonstrated how
they make it practical and easy to build a lightweight database application on top
of STM.

• The transactional trie is a specialized data structure that uses local side-effects
to eliminate contention inside STM. I have discussed its implementation in detail
and reasoned about its safety and related trade-offs. I have shown the superior
performance of the transactional trie relative to similar data structures.

5.1 Related Work
Twilight STM (Bieniusa 2011a) is “a transactional memory system [that] augments trans-
actions with non-reversible operations and allows introspection and modification of a
transaction’s state.” It has a library-level implementation in Haskell, available in the
twilight-stm package (Bieniusa 2011b), which provides a custom STM monad. Twi-
light STM distinguishes between three transactional phases: the atomic phase is the
same as in standard STM; in the twilight phase, inconsistencies between the transac-
tional state and the global state can be detected and fixed, or otherwise ignored; and
once in the safe phase, a transaction is guaranteed to commit, unless explicitly retried,
but the transaction’s write set can still be modified and irrevocable I/O actions can be
performed.

57

http://hackage.haskell.org/package/twilight-stm

The ability to check for and ignore transactional conflicts during the twilight phase
enables the implementation of contention free data structures similar to the transactional
trie. For example, a lookup operation on a singly-linked list could safely ignore any
inconsistencies arising due to concurrent inserts, thereby increasing performance.

The safe phase of Twilight STM is similar to finalizers, and somewhat more powerful:
in addition to safely performing I/O actions, it also allows limited reading and writing
of transactional variables. Unlike finalizers, however, Twilight STM does not support
nesting of transactions inside its safe phase.

Since twilight-stm is a standalone library, without GHC runtime support, its per-
formance is drastically reduced compared to native STM. It is also not compatible with
existing STM code.

The AdvSTM monad from the stm-io-hooks package was already mentioned in Sec-
tion 2.3. In addition to the design differences described there (it is bottom-up rather
than top-down; it allows for higher composability, even though this may be problematic
in conjunction with I/O), it also has the drawback of being incompatible with existing
STM code.

There have been a number of other STM implementations trying to reconcile trans-
actions and side-effects, but all in the context of weakly typed, non-functional languages:

Welc, Saha, and Adl-Tabatabai (2008) describe a transactional memory system for
Java that allows transitioning into an irrevocable state in which a transaction will no
longer roll back. Any subsequent actions, like I/O effects, will never be revoked or
repeated. They use a technique called single-owner read locks and allow only one irre-
vocable transaction to run at a time.

Harris (2005) extends a Java STM system with external actions, which can perform
operations directly on the heap of a given context. When an atomic block finishes, it
promotes heap updates from nested contexts up to its parent context.

Spear, Michael, and Scott (2008) compare several mechanisms for “inevitable” trans-
actions, which cannot abort and of which only one can run at a time.

JudoSTM (Olszewski, Cutler, and Steffan 2007) is a system that uses dynamic
binary-rewriting to transform C and C++ applications to support transactional exe-
cution. It has a concept of “privileged” transactions, which cannot be rolled back and
can be used to make system calls.

The xCall interface for the Intel STM compiler (Volos et al. 2009) enables transactions
to make system calls, through a combination of delaying the execution of calls until the
transaction commits and undoing the side effects of some immediately executed calls
should the transaction abort.

Sonmez et al. (2007) extend Haskell’s STM with an unreadTVar operation that re-
moves a transactional variable from the read set of a transaction. A data structure like
a linked list normally has a read set that is directly proportional to the length of the list,
increasing the potential for false conflicts and aborts. By unreading TVars, one can tra-
verse a list with a small fixed-size read set. This results in much faster execution times,

58

http://hackage.haskell.org/package/twilight-stm
http://hackage.haskell.org/package/stm-io-hooks

although it can lead to unsafe situations, especially when composing with functions that
are not aware of unreadTVar.

Transactional boosting (Herlihy and Koskinen 2008) is a methodology for transform-
ing highly-concurrent linearizable objects into highly-concurrent transactional objects,
provided they satisfy certain regularity properties. For an object to be boosted, its
methods must be commutative, or otherwise be protected by an abstract lock, and they
must have fast inverses, which will be executed if the transaction fails to commit; the
data type itself is treated like a black box. Du Bois, Pilla, and Duarte (2014) describe a
boost function for Haskell, as an extension to a high-level STM implementation (Du Bois
2011).

The transactional trie is not a boosted version of the concurrent trie. The lock-free
concurrent trie does not seem particularly amenable to transactional boosting, since to
ensure commutativity and preserve isolation, some operations would need to acquire
locks and introduce additional bookkeeping. The benefits of reusing an existing con-
current trie implementation via transactional boosting are somewhat reduced by the
necessity of explicit locking, which decreases performance and adds significantly to over-
all complexity, on top of the machinery necessary to enable boosting in the first place.

5.2 Future Work
Finalizers allow transactions to be interactive. In particular, they enable interaction
with remote systems. Building a distributed transactional memory system on top of
finalizers would be the next logical step, leveraging existing distributed computation
frameworks such as Cloud Haskell (Epstein 2011; Coutts, Wu, and Vries 2015). It would
be interesting to see if and how such a system could be implemented using just finalizers,
and how it would compare to more fundamental approaches like the DSTM library (Kupke
2010) or Decent STM (Bieniusa 2011a).

By allowing nesting of transactions, finalizers can truly be arbitrary I/O actions,
including those that are themselves composed of STM transactions — like parts of the
Cloud Haskell platform. But in the current design, programmer error in the form of
circular dependencies between inner and outer transactions is only detected at runtime,
even though it should be possible to do this statically. One could write a compiler plugin
or, more radically, rewrite the STM API to be more strongly typed, perhaps by using an
effect system (Orchard and Petricek 2014). Such a new API would be incompatible with
current STM code, but a full redesign of the interface could open up other possibilities.

The TX monad could also benefit from a more strongly typed API, as a lot of book-
keeping is still up to the programmer. Different approaches to designing a persistency
layer on top of finalizers should be explored. Additionally, there are some low-hanging
fruits in the current design: creating checkpoints of the database state at regular inter-
vals and compressing the on-disk log files would save memory and greatly reduce replay
time at startup. There is also the possibility of making the database distributed, with
or without relying on a wholly distributed STM system underneath.

59

http://hackage.haskell.org/package/DSTM

The concurrent trie, on which the transactional trie is based, supports an efficient
non-blocking snapshot operation (Prokopec, Bronson, et al. 2012). This allows, for ex-
ample, to fold over the trie while it is concurrently modified, without loss of consistency.
It is not clear if it is possible to lift this operation into the transactional setting as well,
while keeping the same performance characteristics, but further exploration is needed.

60

Bibliography

Bagwell, Phil (2001). Ideal Hash Trees. Tech. rep. LAMP-REPORT-2001-001. EPFL
(cit. on p. 32).

Bieniusa, Annette (2011a). “Consistency, Isolation, and Irrevocability in Software Trans-
actional Memory.” PhD thesis. University of Freiburg (cit. on pp. 57, 59).

— (2011b). twilight-stm: STM library with safe irrevocable I/O and inconsistency re-
pair. Version 1.2. url: http://hackage.haskell.org/package/twilight- stm- 1.2
(cit. on p. 57).

Chakravarty, Manuel M. T., Gabriele Keller, Simon Peyton Jones, and Simon Marlow
(2005). “Associated Types with Class.” In: Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’05. Long
Beach, California: ACM, pp. 1–13 (cit. on p. 53).

Coutts, Duncan, Nicolas Wu, and Edsko de Vries (2015). distributed-process: Cloud
Haskell: Erlang-style concurrency in Haskell. Version 0.5.5. url: http://hackage.
haskell.org/package/distributed-process-0.5.5 (cit. on p. 59).

Du Bois, André Rauber (2011). “An Implementation of Composable Memory Transac-
tions in Haskell.” In: Software Composition. Ed. by Sven Apel and Ethan Jackson.
Vol. 6708. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 34–50
(cit. on p. 59).

Du Bois, André Rauber, Maurício Lima Pilla, and Rodrigo Duarte (2014). “Transactional
Boosting for Haskell.” In: Programming Languages. Ed. by Fernando Magno Quin-
tão Pereira. Vol. 8771. Lecture Notes in Computer Science. Springer International
Publishing, pp. 145–159 (cit. on p. 59).

Epstein, Jeffrey (2011). “Functional programming for the data centre.” MA thesis. Uni-
versity of Cambridge (cit. on p. 59).

Gill, Andy and Ross Paterson (2014). transformers: Concrete functor and monad trans-
formers. Version 0.4.0.0. url: http://hackage.haskell.org/package/stm- stats-
0.4.0.0 (cit. on p. 53).

Harris, Tim (2005). “Exceptions and side-effects in atomic blocks.” In: Sci. Comput.
Program. 58.3, pp. 325–343 (cit. on p. 58).

Harris, Tim, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy (2005). “Compos-
able Memory Transactions.” In: Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. PPoPP ’05. Chicago, IL, USA:
ACM, pp. 48–60 (cit. on pp. 3, 11, 13, 15–17).

61

http://hackage.haskell.org/package/twilight-stm-1.2
http://hackage.haskell.org/package/distributed-process-0.5.5
http://hackage.haskell.org/package/distributed-process-0.5.5
http://hackage.haskell.org/package/stm-stats-0.4.0.0
http://hackage.haskell.org/package/stm-stats-0.4.0.0

Harris, Tim and Simon Peyton Jones (2006). “Transactional memory with data invari-
ants.” In: First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing. TRANSACT ’06. Ottawa, Canada: ACM (cit.
on pp. 3, 11, 23).

Herlihy, Maurice and Eric Koskinen (2008). “Transactional Boosting: A Methodology
for Highly-concurrent Transactional Objects.” In: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’08.
Salt Lake City, UT, USA: ACM, pp. 207–216 (cit. on p. 59).

Himmelstrup, David (2014). acid-state: Add ACID guarantees to any serializable Haskell
data structure. Version 0.12.2. url: http://hackage.haskell.org/package/acid-
state-0.12.2 (cit. on p. 52).

Himmelstrup, David and Felipe Lessa (2014). safecopy: Binary serialization with version
control. Version 0.8.3. url: http://hackage.haskell.org/package/safecopy-0.8.3
(cit. on p. 54).

Kupke, Frank (2010). DSTM: A framework for using STM within distributed systems.
Version 0.1.2. url: http://hackage.haskell.org/package/DSTM-0.1.2 (cit. on p. 59).

Leuschner, David, Stefan Wehr, and Joachim Breitner (2011). stm-stats: retry statistics
for STM transactions. Version 0.2.0.0. url: http://hackage.haskell.org/package/
stm-stats-0.2.0.0 (cit. on p. 42).

Loreto, Salvatore, Peter Saint-Andre, Stefano Salsano, and Greg Wilkins (2011). Known
Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional
HTTP. RFC 6202 (cit. on p. 51).

Marlow, Simon (2013a). async: Run IO operations asynchronously and wait for their
results. Version 2.0.1.5. url: http://hackage.haskell.org/package/async-2.0.1.5
(cit. on p. 9).

— (2013b). Parallel and Concurrent Programming in Haskell. O’Reilly Media Inc. (cit.
on p. 3).

Newton, Ryan (2014). atomic-primops: A safe approach to CAS and other atomic ops in
Haskell. Version 0.6. url: http://hackage.haskell.org/package/atomic-primops-0.6
(cit. on p. 34).

Olszewski, Marek, Jeremy Cutler, and J. Gregory Steffan (2007). “JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory.” In: Proceedings of
the 16th International Conference on Parallel Architecture and Compilation Tech-
niques. PACT ’07. Brasov, Romania (cit. on p. 58).

Orchard, Dominic and Tomas Petricek (2014). “Embedding Effect Systems in Haskell.”
In: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14.
Gothenburg, Sweden: ACM, pp. 13–24 (cit. on p. 59).

O’Sullivan, Bryan (2014). criterion: Robust, reliable performance measurement and
analysis. Version 1.0.2.0. url: http://hackage.haskell.org/package/criterion-
1.0.2.0 (cit. on p. 42).

Prokopec, Aleksander, Phil Bagwell, and Martin Odersky (2011). Cache-Aware Lock-Free
Concurrent Hash Tries. Tech. rep. EPFL-REPORT-166908. EPFL (cit. on pp. 32,
33).

62

http://hackage.haskell.org/package/acid-state-0.12.2
http://hackage.haskell.org/package/acid-state-0.12.2
http://hackage.haskell.org/package/safecopy-0.8.3
http://hackage.haskell.org/package/DSTM-0.1.2
http://hackage.haskell.org/package/stm-stats-0.2.0.0
http://hackage.haskell.org/package/stm-stats-0.2.0.0
http://hackage.haskell.org/package/async-2.0.1.5
http://hackage.haskell.org/package/atomic-primops-0.6
http://hackage.haskell.org/package/criterion-1.0.2.0
http://hackage.haskell.org/package/criterion-1.0.2.0

Prokopec, Aleksander, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky (2012).
“Concurrent tries with efficient non-blocking snapshots.” In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP 2012. New Orleans, LA, USA: ACM, pp. 151–160 (cit. on pp. 42, 60).

Robinson, Peter and Chris Kuklewicz (2012). stm-io-hooks: STM with IO hooks. Ver-
sion 0.7.5. url: http://hackage.haskell.org/package/stm-io-hooks-0.7.5 (cit. on
p. 10).

Schröder, Michael (2013). tx: Persistent transactions on top of STM. Version 0.1.0.0.
url: http://hackage.haskell.org/package/tx-0.1.0.0 (cit. on p. 49).

— (2014). ctrie: Non-blocking concurrent map. Version 0.1.0.2. url: http://hackage.
haskell.org/package/ctrie-0.1.0.2 (cit. on p. 33).

Sonmez, Nehir et al. (2007). “UnreadTVar: Extending Haskell Software Transactional
Memory for Performance.” In: Proceedings of the Eighth Symposium on Trends in
Functional Programming. TFP 2007. New York, NY, USA: Intellect (cit. on p. 58).

Spear, Michael F., Maged Michael, and Michael L. Scott (2008). “Inevitability Mech-
anisms for Software Transactional Memory.” In: 3rd ACM SIGPLAN Workshop on
Transactional Computing. TRANSACT ’08 (cit. on p. 58).

Tibell, Johan and Edward Z. Yang (2014). unordered-containers: Efficient hashing-
based container types. Version 0.2.5.0. url: http://hackage.haskell.org/package/
unordered-containers-0.2.5.0 (cit. on p. 42).

Volkov, Nikita (2014a). criterion-plus: Enhancement of the criterion benchmarking
library. Version 0.1.3. url: http://hackage.haskell.org/package/criterion-plus-
0.1.3 (cit. on p. 42).

— (2014b). stm-containers: Containers for STM. Version 0.2.3. url: http://hackage.
haskell.org/package/stm-containers-0.2.3 (cit. on p. 42).

Volos, Haris et al. (2009). “xCalls: Safe I/O in Memory Transactions.” In: Proceedings of
the 4th ACM European Conference on Computer Systems. EuroSys ’09. Nuremberg,
Germany: ACM, pp. 247–260 (cit. on p. 58).

Welc, Adam, Bratin Saha, and Ali-Reza Adl-Tabatabai (2008). “Irrevocable Transactions
and Their Applications.” In: Proceedings of the Twentieth Annual Symposium on
Parallelism in Algorithms and Architectures. SPAA ’08. Munich, Germany: ACM,
pp. 285–296 (cit. on p. 58).

Yates, Ryan (2013). GHC Commentary: Software Transactional Memory (STM). url:
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/STM (cit. on p. 27).

63

http://hackage.haskell.org/package/stm-io-hooks-0.7.5
http://hackage.haskell.org/package/tx-0.1.0.0
http://hackage.haskell.org/package/ctrie-0.1.0.2
http://hackage.haskell.org/package/ctrie-0.1.0.2
http://hackage.haskell.org/package/unordered-containers-0.2.5.0
http://hackage.haskell.org/package/unordered-containers-0.2.5.0
http://hackage.haskell.org/package/criterion-plus-0.1.3
http://hackage.haskell.org/package/criterion-plus-0.1.3
http://hackage.haskell.org/package/stm-containers-0.2.3
http://hackage.haskell.org/package/stm-containers-0.2.3
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/STM

Publications

Presentations
• “Transactional Memory with Finalizers,” presented at the 32nd Workshop of GI

SIG Programmiersprachen und Rechenkonzepte. Bad Honnef, Germany. May 2015

• “Transactional Tries,” to be presented at the 18th Biennial Workshop on Program-
miersprachen und Grundlagen der Programmierung. KPS 2015. Pörtschach am
Wörthersee, Austria. October 2015

Tools
• A patched version of GHC that supports STM finalizers.

http://github.com/mcschroeder/ghc

• The ttrie package: Contention-free STM hash map.
http://hackage.haskell.org/package/ttrie

• A simple social network, built on STM finalizers and transactional tries.
http://github.com/mcschroeder/social-example

65

http://github.com/mcschroeder/ghc
http://hackage.haskell.org/package/ttrie
http://github.com/mcschroeder/social-example

	Motivation
	Transactional Memory with Finalizers
	STM and ACID
	Finalizers
	Related Work
	Semantics of STM
	Semantics of finalizers
	Implementation

	Transactional Tries
	Background
	Implementation
	Memory efficiency
	Evaluation

	STM as a database language
	Example: a social network
	The TX monad
	Caveats

	Conclusions & Perspectives
	Related Work
	Future Work

	Bibliography
	Publications

