
Transactional Tries?

Michael Schröder

Vienna University of Technology
mc.schroeder@gmail.com

http://github.com/mcschroeder

Abstract Software Transactional Memory (STM) immensely simplifies
concurrent programming by allowing memory operations to be grouped
together into atomic blocks. But a common problem with STM is con-
tention. Many standard data structures, when used in a transactional set-
ting, cause unreasonably high numbers of conflicts. I present a contention-
free STM data structure for Haskell: the transactional trie. It is based
on the lock-free concurrent trie, but lifted into an STM context. It uses
well-considered local side-effects to eliminate unnecessary conflicts while
preserving transactional safety.

1 Introduction

It is a widely held opinion that concurrent programming is difficult and error-
prone. Low-level synchronization mechanisms, such as locks, are notoriously
tricky to get right. Deadlocks, livelocks, heisenbugs and other issues encoun-
tered when writing complex concurrent systems are usually hard to track down
and often confound even experienced programmers.

To simplify concurrent programming, higher-level abstractions are needed.
One such abstraction is Software Transactional Memory (STM). Briefly, this
technique allows the programmer to group multiple memory operations into a
single atomic block, not unlike a database transaction. When implemented in a
high-level language such as Haskell, with its emphasis on purity and its strong
static type system, STM becomes especially powerful.

The fundamental data type of STM is the transactional variable. A TVar
stores arbitrary data, to be accessed and modified in a thread-safe manner. For
example, I might define a bank account as

type Euro = Int
type Account = TVar Euro

and then use a function like

transfer :: Account→ Account→ Euro→ STM ()

to safely — in the transactional sense — move money between accounts.

? This report is an abridged version of chapter 3 of my master’s thesis [10].

But where do those accounts come from? If I am a bank, how do I repre-
sent the whole collection of accounts I manage, in a way that is transactionally
safe? The obvious solution, and a common pattern, is to simply use an existing
container type and put that type into a TVar:

type IBAN = String
type Bank = TVar (Map IBAN Account)

Since looking up an account from the Map involves a readTVar operation, the
Map is entangled with the transaction, and I can be sure that when transferring
money between accounts, both accounts actually exist in the bank at the time
when the transaction commits.

The drawback of this pattern of simply wrapping a Map inside a TVar is
that when adding or removing elements of the Map, one has to replace the
Map inside the TVar wholesale. Thus all concurrently running transactions that
have accessed the Map become invalid and will have to restart once they try
to commit. Depending on the exact access patterns, this can be a serious cause
of contention. For example, one benchmark running on a 16-core machine, with
16 threads each trying to commit a slice out of 200 000 randomly generated
transactions, resulted in over 1.3 million retries. That is some serious overhead!

The underlying problem is that the whole Map is made transactional, when
we only ever care about the subset of the Map that is relevant to the current
transaction. If transaction A updates an element with key k1 and transaction
B deletes an element with key k2, then those two transactions only conflict if
k1 = k2; if k1 and k2 are different, then there is no reason for either of the
transactions to wait for the other one. But the Map does not know it is part of
a transaction, and the TVar does not know nor care about the structure of its
contents. And so the transactional net is cast too wide.

The solution is to not simply put a Map, or any other ready-made container
type, into a TVar, but to design data structures specifically tailored to the needs
of transactional concurrency. In this report, I present one such data structure:
the transactional trie.

2 Background: STM in Haskell

Here are the main data types and operations of STM in Haskell:

data STM a
instance Monad STM

atomically :: STM a → IO a

data TVar a
newTVar :: a → STM (TVar a)
readTVar :: TVar a → STM a
writeTVar :: TVar a → a → STM ()

retry :: STM a
orElse :: STM a → STM a → STM a

Atomic blocks in Haskell are represented by the STM monad. Inside this
monad, we can freely operate on transactional variables, or TVars. We can read
them, write them and create new ones. When we want to actually perform
an STM computation and make its effects visible to the rest of the world, we
apply atomically to the computation. This function turns an STM block into
a transaction in the IO monad that, when executed, will take place atomically
with respect to all other transactions.

For example, the following code snippet increments a transactional variable
named v :

atomically $ do x ← readTVar v
writeTVar v (x + 1)

The use of atomically guarantees that no other thread can come in between
the reading and writing of the variable. The sequence of operations happens
indivisibly.

An important aspect of Haskell’s STM implementation is that it is fully com-
posable. Smaller transactions can be combined into larger transactions without
having to know how these smaller transactions are implemented. An important
tool to make this possible is the composable blocking operator retry. Conceptu-
ally, retry abandons the current transaction and runs it again from the top. In
the following example, the variable v is decremented, unless it is zero, in which
case the transaction blocks until v is non-zero again:

atomically $ do x ← readTVar v
if x ≡ 0
then retry
else writeTVar v (x − 1)

In addition to retry, there is the orElse combinator, which allows “trying out”
transactions in sequence. m1 ‘orElse‘ m2 first executes m1; if m1 returns, then
orElse returns; but if m1 retries, its effects are discarded and m2 is executed
instead.

STM is also robust against exceptions. The standard functions throw and
catch act as expected: if an exception occurs inside an atomic block and is not
caught, the transaction’s effects are discarded and the exception is propagated.

For more background on Haskell’s STM, including its implementation, see
the original STM papers [3, 2]. For a more thorough exploration of not only STM
but also other Haskell concurrency mechanisms, read Simon Marlow’s excellent
book on that topic [5].

3 Transactional Tries

The transactional trie is based on the concurrent trie of Prokopec, Bagwell,
and Odersky [8], which is a non-blocking concurrent version of the hash array
mapped trie first described by Bagwell [1].

A hash array mapped trie is a tree whose leaves store key-value bindings and
whose nodes are implemented as arrays. Each array has 2k elements. To look
up a key, you take the initial k bits of the key’s hash as an index into the root
array. If the element at that index is another array node, you continue by using
the next k bits of the hash as an index into that second array. If that element is
another array, you again use the next k bits of the hash, and so on. Generally
speaking, to index into an array node at level l, you use the k bits of the hash
beginning at position k ∗ l. This procedure is repeated until either a leaf node is
found or one of the array nodes does not have an entry at the particular index,
in which case the key is not yet present in the trie. The expected depth of the
trie is O(log2k(n)), which means operations have a nice worst-case logarithmic
performance.

Most of the array nodes would only be sparsely populated. To not waste
space, the arrays are actually used in conjunction with a bitmap of length 2k

that encodes which positions in the array are actually filled. If a bit is set in the
bitmap, then the (logical) array contains an element at the corresponding index.
The actual array only has a size equal to the bit count of the bitmap, and after
obtaining a (logical) array index i in the manner described above, it has to be
converted to an index into the sparse array via the formula #((i − 1) ∧ bmp),
where # is a function that counts the number of bits and bmp is the array’s
bitmap. To ensure that the bitmap can be efficiently represented, k is usually
chosen so that 2k equals the size of the native machine word, e.g. on 64-bit
systems k = 6.

The concurrent trie extends the hash trie by adding indirection nodes above
every array node. An indirection node simply points to the array node under-
neath it. Indirection nodes have the property that they stay in the trie even if
the nodes above or below them change. When inserting an element into the trie,
instead of directly modifying an array node, an updated copy of the array node
is created and an atomic compare-and-swap operation on the indirection node is
used to switch out the old array node for the new one. If the compare-and-swap
operation fails, meaning another thread has already modified the array while
we were not looking, the operation is retried from the beginning. This simple
scheme, where indirection nodes act as barriers for concurrent modification, en-
sures that there are no lost updates or race conditions of any kind, while keeping
all operations completely lock-free. A more thorough discussion, including proofs
of linearizability and lock-freedom, can be found in the paper by Prokopec et al.
[8]. A Haskell implementation of the concurrent trie, as a mutable data structure
in IO, is also available [9].

The transactional trie is an attempt to lift the concurrent trie into an STM
context. The idea is to use the lock-freedom of the concurrent trie to make a
non-contentious data structure for STM. This is not entirely straightforward, as
there is a natural tension between the atomic compare-and-swap operations of
the concurrent trie, which are pessimistic and require execution inside the IO
monad, and optimistic transactions as implemented by STM. While it is possi-
ble to simulate compare-and-swap using TVars and retry, this would entangle the

indirection nodes with the rest of the transaction, which is exactly the opposite
of what we want. To keep the non-blocking nature of the concurrent trie, the
indirection nodes need to be kept independent of the transaction as a whole,
which should only hinge on the actual values stored in the trie’s leaves. If two
transactions were to cross paths at some indirection node, but otherwise con-
cern independent elements of the trie, then neither transaction should have to
retry or block. Side-effecting compare-and-swap operations that run within but
independently of a transaction are the only way to achieve this. Alas, the type
system, with good reason, will not just allow us to mix IO and STM actions,
so we have to circumvent it from time to time using unsafeIOToSTM. We will
need to justify every single use of unsafeIOToSTM and ensure it does not lead
to violations of correctness. Still, bypassing the type system is usually a bad
sign, and indeed we will see that correctness can only be preserved at the cost
of memory efficiency, at least in an STM implementation without finalizers.

4 Implementation

The version of the transactional trie discussed in this report is available on Hack-
age at http://hackage.haskell.org/package/ttrie-0.1.2. The full source
code can also be found at http://github.com/mcschroeder/ttrie.

The module Control.Concurrent.STM.Map1 exports the transactional trie un-
der the following interface:

data Map k v
empty :: STM (Map k v)
insert :: (Eq k ,Hashable k)⇒ k → v → Map k v → STM ()
lookup :: (Eq k ,Hashable k)⇒ k → Map k v → STM (Maybe v)
delete :: (Eq k ,Hashable k)⇒ k → Map k v → STM ()

Now let us implement it. As always, we begin with some types:2

newtype Map k v = Map (INode k v)

type INode k v = IORef (Node k v)

data Node k v = Array !(SparseArray (Branch k v))
| List ![Leaf k v]

data Branch k v = I !(INode k v)
| L !(Leaf k v)

data Leaf k v = Leaf !k !(TVar (Maybe v))

The transactional trie largely follows the construction of a concurrent trie:

1 The name of the trie’s public data type is Map, instead of, say, TTrie. The more
general name is in keeping with other container libraries and serves to decouple the
interface from the specific implementation based on concurrent tries.

2 The ! operator is a strictness annotation.

http://hackage.haskell.org/package/ttrie-0.1.2
http://github.com/mcschroeder/ttrie

– The INode is the indirection node described in the previous section and is
simply an IORef, which is a mutable variable in IO. To read and write IORefs
atomically, we will use some functions and types from the atomic-primops

package [6]:

data Ticket a
readForCAS :: IORef a → Ticket a
peekTicket :: Ticket a → IO a
casIORef :: IORef a → Ticket a → a → IO (Bool,Ticket a)

The idea of the Ticket type is to encapsulate proof that a thread has observed
a specific value of an IORef. Due to compiler optimizations, it would not be
safe to just use pointer equality to compare values directly.

– A Node is either an Array of Branches or a List of Leafs. The List is used in
case of hash collisions. A couple of convenience functions help us manipulate
such collision lists:

listLookup :: Eq k ⇒ k → [Leaf k v]→ Maybe (TVar (Maybe v))
listDelete :: Eq k ⇒ k → [Leaf k v]→ [Leaf k v]

Their implementations are entirely standard.
The Array is actually a SparseArray, which abstracts away all the bit-fiddling
necessary for navigating the bit-mapped arrays underlying a hash array
mapped trie. Its interface is largely self-explanatory:

data SparseArray a
emptyArray :: SparseArray a
mkSingleton :: Level→ Hash→ a → SparseArray a
mkPair :: Level→ Hash→ a → a → Maybe (SparseArray a)
arrayLookup :: Level→ Hash→ SparseArray a → Maybe a
arrayInsert :: Level→ Hash→ a → SparseArray a → SparseArray a
arrayUpdate :: Level→ Hash→ a → SparseArray a → SparseArray a

I will not go into the implementation of SparseArray. It is fairly low-level and
can be found in the internal Data.SparseArray module of the ttrie package.
Some additional functions are used to manipulate Hashes and Levels. Again,
they are self-explanatory:

type Hash = Word
hash :: Hashable a ⇒ a → Hash

type Level = Int
down :: Level→ Level
up :: Level→ Level
lastLevel :: Level

– A Branch either adds another level to the trie by being an INode or it is
simply a single Leaf.

The one big difference to a concurrent trie lies in the definition of the Leaf.
Basically, a Leaf is a key-value mapping. It stores a key k and a value v . But
the way it stores v determines how the trie behaves in a transactional context.
Let us build it step by step:

1. Imagine if Leaf were defined exactly like in a concurrent trie:

data Leaf k v = Leaf !k v

Then an atomic compare-and-swap on an INode to insert a new Leaf would
obviously not be safe during an STM transaction: other transactions could
see the new value v before our transaction commits; and they could replace
v by inserting a new Leaf for the same key, resulting in our insert being lost.

2. We can eliminate lost inserts by wrapping the value in a TVar:

data Leaf k v = Leaf !k !(TVar v)

Now, instead of replacing the whole Leaf to update v , we can use writeTVar
to only modify the value part of the Leaf. If two transactions try to update
the same Leaf, then STM will detect the conflict and one of the transactions
would have to retry.
Of course, if there does not yet exist a Leaf for a specific key, then a new Leaf
will still have to be inserted with a compare-and-swap. In this case it is again
possible for other transactions to read the TVar immediately after the swap,
even though our transaction has not yet committed and may still abort.
This can happen without conflict because the new Leaf contains a newly
allocated TVar and allocation effects are allowed to escape transactions by
design. Reading a newly allocated TVar will never cause a conflict.

3. To ensure proper isolation, the actual type of Leaf looks like this:

data Leaf k v = Leaf !k !(TVar (Maybe v))

By adding the Maybe, we can allocate new TVars with Nothing in them. A
transaction can then insert a new Leaf containing Nothing using the compare-
and-swap operation. Other threads will still able to read the new TVar im-
mediately after the compare-and-swap, but all they will get is Nothing. The
transaction, meanwhile, can simply writeTVar (Just v) to safely insert the
actual value into the Leaf’s TVar. If another transaction also writes to the
TVar and commits before us, then we have a legitimate conflict on the value
level, and our transaction will simply retry.

Now that we have the types that make up the trie’s internal structure, we
can implement its operations. We begin with the function to create an empty
trie:

empty :: STM (Map k v)
empty = unsafeIOToSTM $ Map<$> newIORef (Array emptyArray)

It contains no surprises, although it has the first use of unsafeIOToSTM, which
in this case is clearly harmless.

For the rest of the operations, let us assume we have a function

getTVar :: (Eq k ,Hashable k)⇒ k → Map k v → STM (TVar (Maybe v))

that either returns the TVar stored in the Leaf for a given key, or allocates a new
TVar for that key and inserts it appropriately into the trie. The TVar returned
by getTVar k m will always either contain Just v , where v is the value associated
with the key k in the trie m, or Nothing, if k is not actually present in m.
Additionally, getTVar obeys the following invariants:

Invariant 1: getTVar k1 m ≡ getTVar k2 m ⇐⇒ k1 ≡ k2
Invariant 2: getTVar itself does not read from nor write to any TVars.

Now we can define the trie’s operations as follows:

insert k v m = do var ← getTVar k m
writeTVar var (Just v)

lookup k m = do var ← getTVar k m
readTVar var

delete k m = do var ← getTVar k m
writeTVar var Nothing

The nice thing about defining the operations this way, is that correctness and
non-contentiousness follow directly from the invariants of getTVar. The first in-
variant ensures correctness. If we get the same TVar every time we call getTVar
with the same key, and if that TVar is unique to that key, then STM will take
care of the rest. And if, by the second invariant, getTVar does not touch any
transactional variables, then the only way one of the operations can cause a
conflict is if it actually operates at the same time on the same TVar as another
transaction. Unnecessary contention is therefore not possible.

All that is left to do is implementing getTVar. Essentially, getTVar is a com-
bination of the insert and lookup functions of the concurrent trie, just lifted into
STM. It tries to look up the TVar associated with a given key, and if that does not
exist, allocates and inserts a new TVar for that key. When inserting a new TVar,
the structure of the trie has to be changed to accommodate the new element.

Let us look at the code:

getTVar k (Map root) = go root 0
where

h = hash k

The actual work is done by the recursive helper function go. It begins at level
0 by looking into the root indirection node. Note that throughout the iterations
of go, the hash h of the key is only computed once.

go inode level = do
ticket ← unsafeIOToSTM $ readForCAS inode
case peekTicket ticket of
Array a → case arrayLookup level h a of
Just (I inode2)→ go inode2 (down level)
Just (L leaf 2@(Leaf k2 var))
| k ≡ k2 → return var
| otherwise → cas inode ticket (growTrie level a (hash k2) leaf 2)

Nothing → cas inode ticket (insertLeaf level a)
List xs → case listLookup k xs of
Just var → return var
Nothing → cas inode ticket (return ◦ List ◦ (:xs))

The use of unsafeIOToSTM here is clearly safe — all we are doing is reading the
value of the indirection node. This does not have any side effects, so it does
not matter if the transaction aborts prematurely. If the transaction retries, the
indirection node is just read again — possibly resulting in a different value. It is
also possible that the value of the indirection node changes during the runtime
of the rest of the function — but that is precisely why we obtain a Ticket.

Depending on the contents of the indirection node, we either go deeper into
the trie with a recursive call of go; return the TVar associated with the key; or
insert a new TVar by using the cas function to swap out the old contents of the
indirection node with an updated version that somehow contains the new TVar.

The cas function is also part of the where clause of getTVar:

cas inode ticket f = do
var ← newTVar Nothing
node ← f (Leaf k var)
(ok,)← unsafeIOToSTM $ casIORef inode ticket node
if ok then return var

else go root 0

It implements a transactionally safe compare-and-swap procedure:

1. Allocate a new TVar containing Nothing.
2. Use the given function f to produce a node containing a Leaf with this TVar.
3. Use casIORef to compare-and-swap the old contents of the inode with the

new node.
4. If the compare-and-swap was successful, the new node is immediately visible

to all other threads. Return the TVar to the caller, who is now free to use
writeTVar to fill in the final value.

5. If the compare-and-swap failed, because some other thread has changed the
inode since the time we first read it, restart the operation — not with the
STM retry, which would restart the whole transaction, but simply by calling
go root 0 again.

All that is remaining now are the functions given for f in the code of go.
Given a new Leaf, they are supposed to return a Node that somehow contains

this new Leaf. In the case of the overflow list, this is just a trivial anonymous
function that prepends the leaf into the List node. The insertLeaf function does
pretty much the same, except for Array nodes:

insertLeaf level a leaf = do
let a ′ = arrayInsert level h (L leaf) a
return (Array a ′)

In case of a key collision, things are a slightly more involved. The growTrie
function puts the colliding leaves into a new level of the trie, where they hopefully
will not collide anymore:

growTrie level a h2 leaf 2 leaf 1 = do
inode2 ← unsafeIOToSTM $ combineLeaves (down level) h leaf 1 h2 leaf 2

let a ′ = arrayUpdate level h (I inode2) a
return (Array a ′)

combineLeaves level h1 leaf 1 h2 leaf 2

| level > lastLevel = newIORef (List [leaf 1, leaf 2])
| otherwise =
case mkPair level h (L leaf 1) h2 (L leaf 2) of
Just pair → newIORef (Array pair)
Nothing→ do

inode ← combineLeaves (down level) h1 leaf 1 h2 leaf 2

let a = mkSingleton level h (I inode)
newIORef (Array a)

The use of casIORef here is once again harmless, as combineLeaves only uses IO to
allocate new IORefs. The mkPair function for making a two-element SparseArray
returns a Maybe, because it is possible that on a given level of the trie the two
keys hash to the same array index and so the leaves cannot both be put into
a single array. In that case, another new indirection node has to be introduced
into the trie and the procedure repeated. If at some point the last level has been
reached, the leaves just go into an overflow List node.

5 Memory efficiency

While the transactional trie successfully carries over the lock-freedom of the
concurrent trie and keeps the asymptotic performance of its operations, it does
have to make a couple of concessions regarding memory efficiency.

The first concession is that when looking up any key for the first time, the
lookup operation will actually grow the trie. This is a direct consequence of using
getTVar to implement the trie’s basic operations. If getTVar does not find the
Leaf for a given key, it allocates a new one and inserts it. One might wonder if
it is possible to implement a lookup function that does not rely on getTVar. The
following attempt is pretty straightforward and appears to be correct at first

glance — although you might already guess from its name that something is not
quite right:

phantomLookup :: (Eq k ,Hashable k)⇒ k → Map k v → STM (Maybe v)
phantomLookup k (Map root) = go root 0

where
h = hash k

go inode level = do
node ← unsafeIOToSTM $ readIORef inode
case node of
Array a → case arrayLookup level h a of

Just (I inode2)→ go inode2 (down level)
Just (L (Leaf k2 var))
| k ≡ k2 → readTVar var
| otherwise → return Nothing

Nothing → return Nothing
List xs → case listLookup k xs of
Just var → readTVar var
Nothing → return Nothing

The problem with this simple implementation is that under certain circum-
stances it allows for phantom reads. Consider the following pair of functions:

f = atomically $ do v1← phantomLookup k
v2← phantomLookup k
return (v1 ≡ v2)

g = atomically (insert k 23)

Due to STM’s isolation guarantees, one would reasonably expect that f always
returns True. However, sometimes f will return False when g is run between the
two phantomLookups in f . How is this possible? If you start out with an empty
trie, then the first phantomLookup in f obviously returns Nothing. And it does so
without touching any TVars, because there is no TVar for k at this point. Only
when running g for the first time, will a TVar for k be created. The transaction
inside f will now happily read from this TVar during the second phantomLookup
and will not detect any inconsistencies, because this is the first time it has seen
the TVar. This problem does not only occur on an empty trie, but any time
we look up a key that has not previously been inserted. The only remedy is to
ensure that there is always a TVar for every key, even if it is filled with Nothing,
which is exactly what the implementation of lookup using getTVar does.

Granted, it seems as if these kinds of phantom lookups might not occur
regularly in practice, and even if they did, they would probably cause no great
harm. The overhead of always allocating a Leaf for every key that is ever looked
up, on the other hand, seems much more troublesome. However, phantomLookup
exhibits exactly the kind of seldom-occurring unexpected behavior that results
in bugs that are incredibly hard to find. And having a lookup function that grows
the trie is really only an issue in two cases:

1. when we expect the keys we look up to not be present a significant amount
of the time; then a transactional trie is probably really not the right data
structure. Although if one were to use phantomLookup instead of lookup, and
if in this particular scenario phantom lookups are actually acceptable, then
using a transactional trie could still be feasible.

2. when a malicious actor purposefully wants to increase memory consump-
tion, i.e. a classic denial-of-service attack; then one can again counteract
this by using phantomLookup, limited to those places that are susceptible
to attack. For example, a login routine in a web application could first use
phantomLookup to check if the user actually exists, before continuing with
the transaction. Here the phantom lookup does not matter, because if the
user does not exist the transaction is aborted anyway.

Thus, it makes sense to have the behavior of lookup be the default and provide
phantomLookup for those select scenarios where it is actually an improvement.

The other trade-off the trie has to make regarding memory efficiency, is that
the delete operation does not actually remove Leafs or compact the trie again.
It merely fills a Leaf’s TVar with Nothing. This frees up the values associated
with the keys, which is the major part of a trie’s memory consumption, but it
does not delete the keys or compress the structure that has emerged in the trie,
which might now be suboptimal given the trie’s current utilization.

Again, for the common use case, this might not be a problem. Very often, we
do not want to actually delete certain data, but merely mark it as deleted; or
maybe delete the data, but mark the associated keys as having been previously
in use in order to prevent reusing them. Think of unique user IDs, for example. In
such a scenario, the overhead of the trie not actually deleting Leafs disappears.3

6 Evaluation

I empirically evaluated the transactional trie against similar data structures,
measuring contention, runtime performance and memory allocation. The bench-
marks were run on an Amazon EC2 C3 extra-large instance with Intel Xeon E5-
2680 v2 (Ivy Bridge) processors and a total of 16 physical cores. Under compar-
ison were three hashing-based container types: a transactional trie; a HashMap
from the unordered-containers library [11], wrapped inside a TVar; and the
STM-specialized hash array mapped trie from the stm-containers library [13].

The same random Text strings are used as keys for each container. Each
benchmark consists of a number of random STM transaction. The transactions

3 For the cases where we do want the trie to always be as compact a representation
of its data as possible, there is an unsafeDelete operation, which really does remove
Leafs and compresses the trie again. Alas, as its name suggests, unsafeDelete is
not transactionally safe. It can be made safe by using an STM extension called
finalizers. For a thorough description of finalizers and how they can be used to make
unsafeDelete safe, see [10].

125 ms

250 ms

500 ms

1 s

2 s

1 2 4 6 8 10 12 14 16

1

10

100

1 k

10 k

100 k

1 M

1 2 4 6 8 10 12 14 16

250 MB

500 MB

1 GB

2 GB

1 2 4 6 8 10 12 14 16

200 000 transactions

1–5 operations per transaction

ti
m

e

25% of each operation

re
tr

ie
s

a
ll
o
ca

ti
o
n

unordered-containers
stm-containers

ttrie

Figure 1. Benchmark comparing STM data structures

are split evenly over the number of threads in use. The time it takes to complete
all transactions for a particular container is measured using the criterion and
criterion-plus libraries [7, 12], which calculate the mean execution time over
many iterations. To measure contention, the transactions are run again using
the stm-stats library [4] to count how often the STM runtime system has to
restart transactions due to conflicts. Finally, the transactions are run once more
to measure the total amount of allocated memory, using GHCs built-in facilities
for collecting memory usage statistics. The benchmark was compiled using GHC
7.8.3. For more details about test data generation and the exact benchmark
setup, see the ttrie source distribution.

Figure 1 shows the results of a benchmark performing 200 000 random STM
transactions, where each transaction performs 1–5 operations. Each operation
(insert, lookup, update or delete) occurs equally likely in the mix of operations
per transaction and the containers are prefilled with 1 000 000 entries.4

As we can see from the number of retries, the transactional trie exhibits no
contention; the handful of retries it has to perform — 5 in the worst case — are
due to legitimate conflicts. This is in stark contrast to unordered-containers

and stm-containers: here, the number of spurious retries vastly overshadows
the legitimate conflicts. In the worst case, the TVar-wrapped HashMap has to
retry more than 1.3 million times for the 200 000 transactions to succeed. The
run-time performance of unordered-containers begins to rapidly degrade at
4 threads, which is when the number of retries first exceeds the number of
transactions.

Overall, ttrie is 2–4 times faster than stm-containers, allocating only a
third of the memory; and 1.3–8.6 times faster than unordered-containers,
allocating almost 10 times less memory.

References

[1] Phil Bagwell. Ideal Hash Trees. Tech. rep. LAMP-REPORT-2001-001. EPFL,
2001.

[2] Tim Harris and Simon Peyton Jones. “Transactional memory with data
invariants.” In: First ACM SIGPLAN Workshop on Languages, Compil-
ers, and Hardware Support for Transactional Computing. TRANSACT ’06.
Ottawa, Canada: ACM, 2006.

[3] Tim Harris et al. “Composable Memory Transactions.” In: Proceedings
of the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP ’05. Chicago, IL, USA: ACM, 2005, pp. 48–
60.

[4] David Leuschner, Stefan Wehr, and Joachim Breitner. stm-stats: retry
statistics for STM transactions. Version 0.2.0.0. 2011. url: http://hackage.
haskell.org/package/stm-stats-0.2.0.0.

[5] Simon Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly
Media Inc., 2013.

4 For additional benchmarks with different setups, see [10].

http://hackage.haskell.org/package/stm-stats-0.2.0.0
http://hackage.haskell.org/package/stm-stats-0.2.0.0

[6] Ryan Newton. atomic-primops: A safe approach to CAS and other atomic
ops in Haskell. Version 0.6. 2014. url: http://hackage.haskell.org/
package/atomic-primops-0.6.

[7] Bryan O’Sullivan. criterion: Robust, reliable performance measurement
and analysis. Version 1.0.2.0. 2014. url: http://hackage.haskell.org/
package/criterion-1.0.2.0.

[8] Aleksander Prokopec, Phil Bagwell, and Martin Odersky. Cache-Aware
Lock-Free Concurrent Hash Tries. Tech. rep. EPFL-REPORT-166908. EPFL,
2011.

[9] Michael Schröder. ctrie: Non-blocking concurrent map. Version 0.1.0.2.
2014. url: http://hackage.haskell.org/package/ctrie-0.1.0.2.

[10] Michael Schröder. “Durability and Contention in Software Transactional
Memory.” MSc Thesis. Vienna University of Technology, 2015. url: http:
//github.com/mcschroeder/thesis.

[11] Johan Tibell and Edward Z. Yang. unordered-containers: Efficient hashing-
based container types. Version 0.2.5.0. 2014. url: http://hackage.haskell.
org/package/unordered-containers-0.2.5.0.

[12] Nikita Volkov. criterion-plus: Enhancement of the criterion bench-
marking library. Version 0.1.3. 2014. url: http://hackage.haskell.

org/package/criterion-plus-0.1.3.
[13] Nikita Volkov. stm-containers: Containers for STM. Version 0.2.3. 2014.

url: http://hackage.haskell.org/package/stm-containers-0.2.3.

http://hackage.haskell.org/package/atomic-primops-0.6
http://hackage.haskell.org/package/atomic-primops-0.6
http://hackage.haskell.org/package/criterion-1.0.2.0
http://hackage.haskell.org/package/criterion-1.0.2.0
http://hackage.haskell.org/package/ctrie-0.1.0.2
http://github.com/mcschroeder/thesis
http://github.com/mcschroeder/thesis
http://hackage.haskell.org/package/unordered-containers-0.2.5.0
http://hackage.haskell.org/package/unordered-containers-0.2.5.0
http://hackage.haskell.org/package/criterion-plus-0.1.3
http://hackage.haskell.org/package/criterion-plus-0.1.3
http://hackage.haskell.org/package/stm-containers-0.2.3

	Transactional TriesThis report is an abridged version of chapter 3 of my master's thesis schroeder-2015b.

